• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

UIC Scientists Revamp Cancer Therapy to Enhance Safety and Effectiveness

Bioengineer by Bioengineer
January 31, 2025
in Cancer
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

blank

University of Illinois Chicago researchers have embarked on a groundbreaking journey to redefine the treatment landscape for acute lymphoblastic leukemia, which stands as the most prevalent blood cancer among children. Harnessing the power of protein engineering, the team has innovatively redesigned the enzyme asparaginase, a fundamental component of leukemia therapy. The aim is not only to enhance its therapeutic capabilities but also to mitigate its severe side effects, thus widening the scope of patients who may benefit from this treatment. Through their pioneering efforts, they hope to forge a path toward a safer, more effective therapeutic option for a range of cancers beyond leukemia.

Asparaginase has played a pivotal role in the treatment of acute lymphoblastic leukemia since its FDA approval in the 1970s. Despite its significance in cancer therapy, the existing formulations of asparaginase are notorious for their adverse side effects, including severe blood clots and liver damage. These complications have restricted the drug’s use to a limited subset of patients, often forcing oncologists to make difficult decisions regarding treatment plans. The research team is acutely aware of these challenges and has set themselves on a course to address them head-on, thereby advancing the therapeutic potential of asparaginase for a broader patient population.

The novel enzyme developed by the UIC team seeks to augment the efficacy of asparaginase while significantly reducing the associated risks. By leveraging advanced protein engineering techniques, they have created a biologic compound that preserves the enzyme’s anticancer properties while minimizing the toxic effects that have plagued traditional formulations. This optimization process not only enhances the drug’s therapeutic index but also raises the prospect of utilizing it in the treatment of other malignancies, such as melanoma and liver cancer. As such, the research represents a promising leap towards developing more versatile cancer therapies.

In a recent publication in the journal Cancer Letters, Lavie and his collaborators reported compelling findings from preclinical studies conducted on animal models. Their innovative enzyme demonstrated impressive efficacy, successfully obliterating leukemia cells in mice while sparing them from the debilitating side

Tags: acute lymphoblastic leukemia treatmentcancer therapy advancementsenhancing therapeutic capabilitiesFDA-approved cancer drugsimproving patient outcomes in cancer therapyinnovative oncology researchmitigating cancer treatment side effectspediatric blood cancer researchprotein engineering in medicineredesigned asparaginase enzymesafer cancer treatment optionstargeted leukemia therapies

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Hepatoblastoma Trends: Dynamic SDI Analysis

July 5, 2025
Noninvasive Nasopharyngeal Cancer Detection via Gene Methylation

Noninvasive Nasopharyngeal Cancer Detection via Gene Methylation

July 5, 2025

Molecular Biomarkers Predicting Adult Glioma Radiosensitivity

July 5, 2025

Aerobic Exercises Combat Fatigue in Colorectal Cancer

July 5, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Diagnoses Structural Heart Disease via ECG

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Shape-Shifting Biphasic Liquids with Bistable Microdomains

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.