• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Tracking and forecasting outbreak risk of dengue, Zika and other Aedes-transmitted diseases

Bioengineer by Bioengineer
August 4, 2020
in Immunology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New system infuses ‘R0’ models with climate information to help public health agencies forecast places and times when environmental conditions might enhance transmission of dengue, Zika and other Aedes-borne diseases

IMAGE

Credit: International Research Institute for Climate and Society

Researchers led by Columbia University’s International Research Institute for Climate and Society and the Pan-American Health Organization have developed a system to monitor and forecast the environmental suitability of transmission of Zika, dengue fever, chikungunya and other diseases carried by species of Aedes mosquitos in the U.S. and neighboring regions.

Their results show that the forecasting skill of the new system is very good, with ‘hotspots’ of higher skill in Guatemala, Honduras, El Salvador, Cuba, Haiti, Dominican Republic, Jamaica and Puerto Rico.

The team published its findings in Scientific Reports.

The new system, called AeDES (https://aedes.iri.columbia.edu), is expected to help public-health authorities identify at-risk areas at least a month ahead of time, improving response and planning operations.

As a demonstration, the researchers used AeDES to predict that the current dengue outbreak in Central America will continue during the rest of 2020 and most likely will worsen. The compound effect of dengue and the ongoing COVID pandemic is expected to increase the number of coinfections in the region, the authors write.

Aedes-transmitted diseases cause more than 50 million infections every year worldwide, including in the United States, and cases have increased by 30-fold in the last 50 years because of changes in climate, land use and population.

These diseases, as with all mosquito-borne disease, are climate-sensitive-the risk of outbreaks goes up or down in part based on temperature, rainfall and humidity, which affect the life and reproductive cycle of the insects.

Supercharged climate-epidemiological modeling

“This is the first system for the region to monitor and forecast in real-time the conditions that are needed for transmission of Aedes-borne diseases,” said Ángel Muñoz, a climate scientist at IRI and lead author of the paper.

“We’ve combined multiple R0 epidemiological models with multiple climate models, as well as seven decades of historical climate data,” Muñoz said. (Epidemiologists use R0 to describe how contagious an infectious disease is. A value of 2, for example, means that a person who has the disease will infect an average of two other people.)

When climate centers make probabilistic forecasts of weather and climate, they use multimodel ensembles-which generate many simulations from many models so as to give a range of possible outcomes.

Muñoz and his colleagues adapted this approach for AeDES, combining four well-known R0 models with the 96 members (or total executions per month) currently in the North American Multi-Model Ensemble (NMME). As a result, the team generates 384 simulations each time it runs AeDES.

“Because we have such a huge sample to draw from, the probabilistic forecasts generated from these runs are really robust,” said Muñoz.

Public-health specialists can also use AeDES, which is powered by the IRI’s Data Library, to calculate and visualize the environmental suitability of disease transmission month-by-month going back to 1948, enabling them to better understand how climatic changes have been impacting different regions.

“The advantage of AeDES is that health ministry staff working at the country and subnational level will be able to adapt forecasts to their specific localities, allowing field actions to be much more targeted and tailored to their local conditions,” said co-author Ana Rivière-Cinnamond, from the Pan-American Health Organization. “Also, international and national health organizations could use the system to help identify future at-risk areas for vector-borne diseases-at border areas, for example, so as to alert authorities in advance to take action.”

In 2015, faced with a potential multi-country public-health emergency caused by the Zika virus, PAHO asked IRI to develop a system that used climate variables to try to stay a step ahead of future outbreaks. Based on the promising results of this initial collaboration (for more, read here, here and here), both PAHO and the National Oceanic and Atmospheric Administration’s Climate Program Office lent further support to IRI to develop and expand the system into what is now AeDES.

Muñoz and his team were also able to integrate the NextGen forecasting system and methodology (factsheet) developed as part of the Adapting Agriculture to Climate Today, for Tomorrow (ACToday) Columbia World Project.

“It’s a great example of how advances we were able to make because of Columbia’s commitment to ACToday-a project focused food security-led to advances for the public health community,” said Muñoz.

The two are not unrelated, Muñoz added. “Covid-19 has created a serious food-security crisis in Central America, and this is exacerbating the present dengue outbreak there. It is not only important to join forces between these two projects, it’s our duty to do so.”

###

This research was partially supported by ACToday, the first Columbia World Project, as well as by grants from the National Oceanic and Atmospheric Administration, the National Science Foundation, the National Institutes of Health and the Swedish Research Council.

Media Contact
Francesco Fiondella
[email protected]

Original Source

https://iri.columbia.edu/news/realtime-tracking-and-forecasting-of-outbreak-risk-of-dengue-zika-and-other-aedes-transmitted-diseases/

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-69625-4

Tags: Atmospheric ScienceClimate ChangeClimate ScienceEcology/EnvironmentEpidemiologyInfectious/Emerging DiseasesPublic HealthTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serum Markers Predict Atrial Fibrillation in Diabetes

Intrapleural Anti-VEGF Boosts Nab-Paclitaxel Efficacy

Amyloid Fibrils Connect CHCHD10, CHCHD2 to Neurodegeneration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.