• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

These nine measures reveal how forests are controlled by climate

Bioengineer by Bioengineer
December 28, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Instead of blood pressure, temperature, and heart rate, the vital signs for a forest are captured in key traits such as the amount of nitrogen in a tree’s leaves, the leaf area, or the density of the wood. These “functional traits” can impact how trees grow — and therefore how forests respond to climate change. While researchers have begun trying to tease out these patterns in recent decades, incomplete data has made it difficult to understand what’s happening to particular traits in any meaningful way — especially when you get down to the level of individual trees in a forest.

To help fill this important knowledge gap, Daniel J. Wieczynski and Santa Fe Institute external professor Van M. Savage, both ecologists at the University of California-Los Angeles, and their collaborators decided to analyze existing data from trait studies on forest communities to see what could be revealed about these shifts on a global scale.

“One of the challenges is that you need a lot of data to accurately measure functional diversity,” says Wieczynski. “So our idea was to take what functional data we have available from databases and pair this with locally collected field data, as well as data about species abundance, to say something about climate-biodiversity relationships that we couldn’t say before.”

The team, which also included Santa Fe Institute external professor Brian Enquist of the University of Arizona, amassed data from 421 tree communities around the world, including information from 55,983 individual trees from 2,701 species, and examined a range of “functional traits” that influence individual growth, such as plant height, wood density, leaf area, and the amount of carbon, nitrogen and phosphorus in a leaf. To determine the climatic conditions these tree communities are living in, they also analyzed the temperature, precipitation, wind speed and vapor pressure in each one.

The study — one of the first to examine how climate is influencing functional traits in forest communities on a global scale — found evidence of major changes in these traits, which could affect forest productivity and composition and even how forests are distributed around the globe. And they found that climate affects nine different traits in various ways: For example, they discovered that leaf area is most influenced by vapor pressure and temperature, while height is primarily affected by temperature variability. To the authors’ surprise, two climatic factors in particular had an outsized effect on trait diversity overall: temperature variability — not just mean temperature — and vapor pressure. They also found evidence that forests are currently shifting their traits in response to global warming.

Wieczynski and Savage hope the work could help improve the accuracy of computer models that try to predict how forests will respond to climate change in the future. ” By calculating a more accurate relationship between functional diversity and climate, using the methods we used, we’ll be able to more accurately predict those changes in the future using these models,” Wieczynski says. “And hopefully this will show it’s important to measure more trait data in communities, or more individual level information in communities than just species-level information.”

“I think these results will be useful to determine climate change’s effects on ecological systems,” Savage says.

This is just the start in gaining a better grasp of how climate change is affecting functional traits in forest communities, Wieczynski adds. “The next step is to go out to do new field studies where you actually measure trait values for more individuals.”

###

Media Contact
J. Marshall
[email protected]
505-930-6131
http://dx.doi.org/10.1073/pnas.1813723116

Tags: BiologyClimate ChangeForestryPlant SciencesPopulation BiologySystems/Chaos/Pattern Formation/ComplexityTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

March 21, 2023
Hitchhiking insect

Spotted lanternfly spreads by hitching a ride with humans

March 20, 2023

Oregon State researchers begin to unravel whale entanglement risk factors off Oregon Coast

March 20, 2023

In hot water: Ocean warming impacts growth, metabolic rate and gene activity of newly hatched clownfish

March 20, 2023
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

The Minderoo-Monaco Commission on Plastics and Human Health issues sweeping new report

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In