• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The secret to stickiness of mussels underwater

Bioengineer by Bioengineer
June 1, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: POSTECH

Mussels survive by sticking to rocks in the fierce waves or tides underwater. Materials mimicking this underwater adhesion are widely used for skin or bone adhesion, for modifying the surface of a scaffold, or even in drug or cell delivery systems. However, these materials have not entirely imitated the capabilities of mussels.

A joint research team from POSTECH and Kangwon National University (KNU) – led by Professor Hyung Joon Cha and Ph.D. candidate Mincheol Shin of the Department of Chemical Engineering at POSTECH with Professor Young Mee Jeong and Dr. Yeonju Park of the Department of Chemistry at KNU – has analyzed Dopa and lysine, which are the amino acids that make up the surface adhesive proteins secreted by mussels, and verified that their roles are related to their location. The team has taken a step closer to revealing the secret of underwater adhesion by uncovering that these amino acids can contribute to surface adhesion and cohesion differently depending on their specific location.

The characteristic of mussel adhesive proteins that have been mimicked so far is that they contain a large number of a unique amino acid called Dopa. Dopa is a modified amino acid with one more hydroxyl group attached to tyrosine, and research on underwater adhesion started with the fact that Dopa makes up a large component of the adhesive protein.

However, the research team questioned the fact that this excellent underwater adhesion of mussels is enabled by only one molecule and focused on observing the number and location of lysine, which is an amino acid as frequently occurring as Dopa.

As a result, the research team uncovered that Dopa and lysine are attached to each other with about half the probability. On the other hand, it was revealed that unlike what has been known so far, when dopa and lysine are attached together, they do not always produce positive synergy. The researchers confirmed that in the case of the cation-π interaction, negative synergy is rather produced.

When Dopa and lysine are together, a difference in the density of water molecules occurs at the microscopic level and the concentration of water molecules around Dopa is lowered. This lowered concentration enables a difference in the hydrogen bonding strength between the benzene ring and the hydroxyl group of Dopa, thereby lowering the structural stability of the cation-π complex. Using the Raman spectroscopy, the research team confirmed that the CH2 group located in the lysine chain situated close to Dopa and catechol of the adjacent Dopa form an intramolecular interaction, thereby lowering its stability.

The findings of this study make it possible to confirm how adhesive protein of mussels was designed, and it shows promise to be applicable for research on adhesive proteins of other organisms in the future.

“With this new discovery on the synergy between Dopa and lysine, which are known to always play a positive role in underwater adhesion, it will change the framework of the way adhesive materials are designed,” remarked Professor Hyung Joon Cha who led the research.

This research, which was recently published in Chemistry of Materials, was conducted as a part of the study titled “Understanding the underwater adhesion mechanism of adhesive organisms: controlling the balance between surface adhesion and cohesion,” which is a Mid-career Researcher Program of the Ministry of Science and ICT and the National Research Foundation of Korea.

###

Media Contact
Jinyoung Huh
[email protected]

Original Source

https://postech.ac.kr/eng/the-secret-to-stickiness-of-mussels-underwater/?pageds=1&k=&c=

Related Journal Article

http://dx.doi.org/10.1021/acs.chemmater.1c00079

Tags: BiochemistryBiologyBiomechanics/BiophysicsBiotechnologyChemistry/Physics/Materials SciencesMarine/Freshwater BiologyResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025
Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025

Astronomers Chart Stellar ‘Polka Dots’ with NASA’s TESS and Kepler Missions

August 25, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    145 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Common Cold Could Offer Protection Against COVID-19, Finds National Jewish Health Study

Unraveling Ferroptosis in Esophageal Cancer Therapy

Impact of Iranian Medicinal Plants on Pancreatic Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.