• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The role of calcium handling mechanisms in reperfusion injury

Bioengineer by Bioengineer
December 19, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

This article by Dr. Dimitrios A. Vrachatiets al. is published in Current Drug Delivery, Volume 24, 46 Issues, 2018

Stroke and myocardial infarction (MI) are a significant cause of death and disability worldwide. However, over the past several decades because of advances in medicines (thrombolytic agents, antiplatelet drugs, beta blockers, and angiotensin converting enzyme inhibitors) and approaches to restore tissue perfusion (percutaneous coronary intervention and cardiopulmonary bypass), the mortality of MI has declined dramatically.

These treatments have been known to reduce acute myocardial ischemic injury and to limit MI size when experiments and were done on animals. However, reperfusion can itself amplify cell injury and death; this is known as myocardial ischemia-reperfusion injury (I/R). Several studies have uncovered complex mechanisms of cardiomyocyte damage after the process of reperfusion, and efforts are ongoing to search for therapeutic targets to reduce I/R. One of the most observations is is the elevation of Ca2+ ions that takes place at intracellular and mitochondrial levels during reperfusion. This increase in Ca2+ predisposes patients to mitochondrial failure, hyper-contracture and proteolysis, eventually leading the cell toward necrotic or apoptotic death. The channels of the sarcolemma (L-Type Ca2+ channels and sodium/calcium exchangers), the endoplasmic/sarcoplasmic reticulum (SERCA ATPase) and ryanodine receptors, SOCE(store-operated calcium entry), lysosomes and others, which are modified by I/R injury are responsible for these enormous alterations in cytosolic Ca2+ levels.

This review describes different biochemical pathways that lead to Ca2+ overload that causes I/R. Advances in therapeutic strategies oin light of recent discoveries are also discussed.

###

This article is Open Access. To obtain the article please visit http://www.eurekaselect.com/167648

Media Contact
Faizan ul Haq
[email protected]
http://dx.doi.org/10.2174/1381612825666181120155953

Tags: AlzheimerBiochemistryCardiologyMedicine/HealthMolecular BiologyPharmaceutical SciencesPharmaceutical/Combinatorial ChemistryStroke
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Reveals Mysterious ‘Ghost’ of the Australian Bush

September 5, 2025
blank

Novel Mangrove-Derived Streptomyces Reveals Biosynthetic Potential

September 5, 2025

CRISPR-Cas9 Techniques for Editing Non-Model Insects

September 5, 2025

Rapid Brain Growth Could Unlock How Humans and Marmosets Learn to Talk

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enduring Benefits of OR Shadowing for New Nurses

Revolutionizing CAR Therapy for Thyroid Eye Disease

Mesenchymal Stem Cells’ Immunomodulation in Lung Diseases

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.