• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 4, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The physics behind tumor growth

Bioengineer by Bioengineer
January 21, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New theory uses physics to predict the growth stages of cancerous tumors

IMAGE

Credit: Bean, et al. Mol. Cell, 2006. DOI: 10.1016/j. molcel.2005.10.035.

DURHAM, N.C. — Researchers at Duke University have developed a predictive theory for tumor growth that approaches the subject from a new point of view. Rather than focusing on the biological mechanisms of cellular growth, the researchers instead use thermodynamics and the physical space the tumor is expanding into to predict its evolution from a single cell to a complex cancerous mass.

The results appeared Jan. 15 in the journal Biosystems.

“When scientists think about cancer, the first thing that comes to mind is biology, and they tend to overlook the physical reality of its growth pattern,” said Ehsan Samei, professor of radiology at the Duke University School of Medicine. “There are also issues of how a tumor interacts with its surroundings and provides nutrients to its cells, which is an aspect of the story that so far hasn’t been focused on very much.”

“Our theory uses fundamental concepts of how natural systems grow and reorganize themselves to gain greater access to flowing systems,” said Adrian Bejan, the J.A. Jones Distinguished Professor of Mechanical Engineering at Duke. “It not only explains how this growth should happen, but also why it must happen.”

The new work is based on the constructal law, which Bejan penned in 1996, that states that for a system to survive, it must evolve to increase its access to flow. For example, the human vascular system has evolved to provide blood flow through a network of a few large arteries and many small capillaries. River systems, tree branches and modern highway and road networks all reflect the same forces at work.

In the paper, Bejan, Samei and doctoral student Thomas Sauer demonstrate how a tumor’s growth and internal reorganization as it grows are directly tied to its need to create greater access to flowing nutrients as well as conduits for removing refuse. They use these insights to predict the growth of cell clusters as a function of structure, and also to predict the critical cluster sizes that mark the transitions from one distinct configuration to the next.

To validate their theory, the researchers compared their predictions with the measurements of several independent studies of cancerous and non-cancerous tumor growth patterns. The results show that their work provides a unifying perspective on the growth of cell clusters on the smallest scales as well as the large-scale dynamics of proliferating cells as described in phenomenological models.

“As the tumor grows, the flow systems get large enough to create visible currents through the vascularization of the tumor,” said Bejan. “Our theory reveals the physics behind these sorts of dramatic transitions and predict when they should happen.”

For the past 15 years, Samei has been working on computational, extremely detailed models of patients to test new interventions and medical procedures through so-called virtual clinical trials. These trials emulate the patient and the procedures to enable medical evaluations that would otherwise be prohibitively costly or unethical. Until recently, the tumors represented in these virtual patients have been static. But with the new theory of tumor growth, Samei is successfully creating dynamic, growing tumor models that may open new pathways to cancer research.

Samei is currently in the process of generating tumor growth images from his new models, mixing them with images taken from real patients, and testing radiologists to see if they can tell the difference. So far, the results have been promising.

“If the tumors don’t grow, the model isn’t realistic,” said Samei. “We want our platform to be able to accurately model tumor growth so that we can answer the very real question of how often a patient needs to be imaged to determine whether or not their cancer is growing or shrinking.”

###

CITATION: “Cell and Extracellular Matrix Growth Theory and its Implications for Tumorigenesis,” T.J. Sauer, E. Samei, A. Bejan. Biosystems, Jan. 15, 2021. DOI: 10.1016/j.biosystems.2020.104331

Media Contact
Ken Kingery
[email protected]

Original Source

https://pratt.duke.edu/about/news/physics-tumor-growth

Related Journal Article

http://dx.doi.org/10.1016/j.biosystems.2020.104331

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologycancerCell BiologyMedicine/Health
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

New microcomb could help discover exoplanets and detect diseases

March 4, 2021
IMAGE

Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology

March 4, 2021

Nature: new compound for male contraceptive pill

March 3, 2021

Conquering the timing jitters

March 3, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    665 shares
    Share 266 Tweet 166
  • People living with HIV face premature heart disease and barriers to care

    83 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Cell BiologyTechnology/Engineering/Computer SciencePublic HealthEcology/EnvironmentInfectious/Emerging DiseasescancerBiologyMedicine/HealthClimate ChangeGeneticsMaterialsChemistry/Physics/Materials Sciences

Recent Posts

  • Research contributes to understanding of hypersonic flow
  • New microcomb could help discover exoplanets and detect diseases
  • Purdue Research Foundation partners with IdentifySensors Biologics for COVID-19 technology
  • Air pollution fell sharply during lockdown
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In