• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The mantis shrimp’s perfect shield

Bioengineer by Bioengineer
June 10, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How it’s inspiring a new class of lightweight, impact-resistant materials

Credit: Roy Caldwell/UC Berkeley

How do you protect yourself from the perfect striking weapon? You develop the perfect shield.

If you’re a mantis shrimp with a clublike arm tough enough to crack clamshells, you’d better not get into any fights with your pals. But the tiny crustaceans, among the ocean’s feistiest creatures, can’t resist taking swipes at each other over habitat, so they evolved a specialized shield in their tail segment called a telson that absorbs the blows. The telson is a multiscale structure with ridges on the outside and a structure shaped like a spiral staircase on the inside. It’s inspiring a new class of lightweight, impact-resistant materials for helmets, cars, and more.

Research led by David Kisailus, the Winston Chung Endowed Professor in Energy Innovation at UC Riverside’s Marlan and Rosemary Bourns College of Engineering; and Pablo Zavattieri, a professor and University Faculty Scholar at Purdue’s Lyles School of Civil Engineering have unlocked the telson’s secret — with an eye toward creating better materials for sports, aerospace, and a multitude of other applications.

Kisailus, whose lab investigates biological composite structures as inspiration for new materials, said a paper by Duke University’s Sheila Patek about the telson’s ability to absorb energy, inspired him to investigate the role multiscale architectural features have on impact resistance.

Some species of mantis shrimp, called smashers because of their powerful dactyl club, inhabit cavities in coral reefs. Competition for the limited number of suitable caves is fierce and the mantis use their telson to protect themselves from devastating blows. Less aggressive types of mantis shrimp, called spearers — after the appendage they use to stab prey — also have a telson. Spearers live in the sand, which is abundant, and thus have fewer conflicts over habitat.

Kisailus, the lead researcher of a multi-university grant funded by the Air Force Office of Scientific Research, and his team initiated the studies of both the large-scale architecture as well as the internal structure of both types of telson and subjected each to mechanical testing. They found a helicoidal structure within this specialized shield that prevents cracks from growing and ultimately dissipates significant amounts of energy from strikes to avoid catastrophic failure. The helicoidal, or twisted plywood-like, structure is similar to one the researchers previously identified in the smasher’s dactyl club that allows it to crack clamshells without breaking itself.

“For over a decade, we have been studying the dactyl club of the smashing type of mantis shrimp. We realized that if these organisms were striking each other with such incredible forces, the telson must be architected in such a way to act like the perfect shield,” Kisailus said. “We found that not only did the telson of the smasher contain the helicoid microstructure, but there were significantly more layers in the smashing type than the spearing type.”

Zavattieri added there is always a trade-off between amount of material required for protection and lightweight capacity for fast deployment as demonstrated by the smasher.

“Having access to one the most efficient materials architectures, such as the helicoid, in conjunction with a clever geometry, makes this another winner solution found by nature,” he said.

The researchers also revealed the function of highly curved ridges, called carinae, that run the length of the telson in the smashing mantis by performing mechanical tests on the telson as well as 3D printed replicas of its structure.

“When we observed the carinae, it was obvious that they stiffened the telson along its long axis,” Kisailus said. “However, we found that the carinae also allowed the telson to flex inward when forces were applied perpendicular to its long axis. This enabled us to discover the non-obvious function of these ridges, which was to absorb significant amounts of energy during a strike. Pablo’s models then validated our hypotheses.”

Zavattieri applied simple mechanics principles and computational modeling to understand the role of the carinae.

“We found that these geometrical features can lead to both stiffening or softening structural behavior. These competing mechanisms are in principle counter-intuitive, and there is still more to learn from these species,” Zavattieri said. “Moreover, these principles can then be applied to applications where lightweight impact protection is needed.”

Kisailus and his team have been incorporating the findings into development of highly impact-resistant materials for use in helmets and other structural materials.

“It is a very exciting time for us as we have engaged with multiple entities, including aerospace, sports, and automotive teams, who are interested in implementing this technology,” Kisailus said. “Two of my team members are currently working with the Air Force Research Labs to make lighter, stronger materials.”

###

The paper, “The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield,” is published in Advanced Functional Materials. In addition to Kisailus and Zavattieri, authors include Nicholas A. Yaraghi, Adwait A. Trikanad, David Restrepo, Wei Huang, Steven Herrera, Jesus Rivera, Mikhail Zhernenkov, Dilworth Y. Parkinson, and Roy L. Caldwell.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Holly Ober
[email protected]

Original Source

https://news.ucr.edu/articles/2019/06/10/mantis-shrimps-perfect-shield

Related Journal Article

http://dx.doi.org/10.1002/adfm.201902238

Tags: Biomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMarine/Freshwater BiologyMaterialsResearch/DevelopmentTechnology Transfer
Share12Tweet8Share2ShareShareShare2

Related Posts

Revealing the Causes of Battery Failure Using Graphene Mesosponges

Revealing the Causes of Battery Failure Using Graphene Mesosponges

October 20, 2025
blank

Hidden Cavities in 2D Devices Unlock New Electronic Behaviors

October 20, 2025

Can Animals Be Fooled by Optical Illusions? Insights from Fish and Birds on Perception

October 20, 2025

McGill Study Identifies Montreal Snow Dumps and Inactive Landfills as Significant Methane Emitters

October 17, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1265 shares
    Share 505 Tweet 316
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    298 shares
    Share 119 Tweet 75
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    127 shares
    Share 51 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oxytocin Controls Heart Rate via Brain Pathway

AASM Reveals Finalists for Inaugural Sleep Medicine Disruptors Innovation Award

New White Paper Calls on Policymakers to Update Practice Laws and Unlock AI’s Full Potential in Healthcare

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.