• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The fiddlers influencing mangrove ecosystems

Bioengineer by Bioengineer
March 11, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 Marco Fusi

The types of bacteria present in and around mangrove fiddler crab burrows in three different geographic locations were compared by KAUST researchers. They found that the crabs’ burrowing activity changed the sediment in a way that attracted different types of bacteria across the three locations: however, the bacteria performed similar functions, such as aerobic respiration, and potential ecological services, such as turnover of organic matter.

“Mangrove crabs act like ecosystem engineers: Their burrows create radial, halo-like microbiological and geochemical modifications to the surrounding sediment compared with soil that has been left undisturbed,” says Jenny Booth, the first author of the study. “This effect was similar in all three locations, with the burrow-dwelling bacteria being taxonomically different but functionally similar,” she adds.

Microorganisms play important roles in driving global biochemical cycles, such as the nitrogen cycle, in which nitrogen–a building block of proteins and nucleic acids– circulates among the earth, the atmosphere and marine ecosystems.

Microbial ecologist Daniele Daffonchio and his team at KAUST’s Red Sea Research Center hypothesized that bacteria present within the same model system had similar functions, rather than similar taxonomy, even when these systems existed in very different local environmental conditions.

To test this, they sampled the sediment in and around the burrows created by mangrove-dwelling fiddler crabs in two locations on the Saudi Red Sea and a third in South Africa.

The researchers say their findings could be explained by the fact that burrowing leads to similar changes in the sediment regardless of location. Crabs typically bring sediment up from deeper layers onto the surface and vice versa. This sediment mixing changes the biochemical composition of the surrounding sediment, creating a hotspot of oxidative reactions and changing the types of bacteria living there. Burrow sediment, for example, has more bacteria that use oxygen for respiration, while the surrounding bulk soils have more bacteria that employ anaerobic respiration mechanisms. Sediment mixing also increases nutrient availability, and thus bacterial activity, within the burrow soils.

The researchers estimate that the halo-like ring of biochemical and microbial changes that extend a small distance around the fiddler crab burrows can influence up to 35 percent of mangrove sediment. In Kenyan mangroves, where burrow density is very high, this effect can influence almost 80 percent of the sediment.

“We predict that the bioturbation effect of crabs and similar burrowing species has a large overall impact on mangrove ecosystems by altering the nature of the sediment’s microbiome. These changes ultimately govern environmental processes, like carbon and nutrient fluxes, in this coastal ecosystem,” says Daffonchio.

###

Media Contact
Carmen Denman
[email protected]

Original Source

https://discovery.kaust.edu.sa/en/article/812/the-fiddlers-influencing-mangrove-ecosystems

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-40315-0

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater BiologyMicrobiologyNutrition/NutrientsPlant Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Ingestible Capsules Enable Microbe-Based Therapeutic Control

July 28, 2025
Engineering Receptors to Enhance Flagellin Detection

Engineering Receptors to Enhance Flagellin Detection

July 28, 2025

Decoding FLS2 Unveils Broad Pathogen Detection Principles

July 28, 2025

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Plasma Synuclein Test Advances Parkinson’s Diagnosis

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.