• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

The climate impact of wild pigs greater than a million cars

Bioengineer by Bioengineer
July 19, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Queensland

By uprooting carbon trapped in soil, wild pigs are releasing around 4.9 million metric tonnes of carbon dioxide annually across the globe, the equivalent of 1.1 million cars.

An international team led by researchers from The University of Queensland and The University of Canterbury have used predictive population models, coupled with advanced mapping techniques to pinpoint the climate damage wild pigs are causing across five continents.

UQ’s Dr Christopher O’Bryan said the globe’s ever-expanding population of feral pigs could be a significant threat to the climate.

“Wild pigs are just like tractors ploughing through fields, turning over soil to find food,” Dr O’Bryan said.

“When soils are disturbed from humans ploughing a field or, in this case, from wild animals uprooting, carbon is released into the atmosphere.

“Since soil contains nearly three times as much carbon than in the atmosphere, even a small fraction of carbon emitted from soil has the potential to accelerate climate change.

“Our models show a wide range of outcomes, but they indicate that wild pigs are most likely currently uprooting an area of around 36,000 to 124,000 square kilometres, in environments where they’re not native.

“This is an enormous amount of land, and this not only affects soil health and carbon emissions, but it also threatens biodiversity and food security that are crucial for sustainable development.”

Using existing models on wild pig numbers and locations, the team simulated 10,000 maps of potential global wild pig density.

They then modelled the amount of soil area disturbed from a long-term study of wild pig damage across a range of climatic conditions, vegetation types and elevations spanning lowland grasslands to sub-alpine woodlands.

The researchers then simulated the global carbon emissions from wild pig soil damage based on previous research in the Americas, Europe, and China.

University of Canterbury PhD candidate Nicholas Patton said the research would have ramifications for curbing the effects of climate change into the future.

“Invasive species are a human-caused problem, so we need to acknowledge and take responsibility for their environmental and ecological implications,” Mr Patton said.

“If invasive pigs are allowed to expand into areas with abundant soil carbon, there may be an even greater risk of greenhouse gas emissions in the future.

“Because wild pigs are prolific and cause widespread damage, they’re both costly and challenging to manage.

“Wild pig control will definitely require cooperation and collaboration across multiple jurisdictions, and our work is but one piece of the puzzle, helping managers better understand their impacts.

“It’s clear that more work still needs to be done, but in the interim, we should continue to protect and monitor ecosystems and their soil which are susceptible to invasive species via loss of carbon.”

###

The research has been published in Global Change Biology (DOI: 10.1111/gcb.15769).

Media Contact
Dr Christopher O’Bryan
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/gcb.15769

Tags: AgricultureAtmospheric ScienceClimate ChangeClimate ScienceGeology/SoilPollution/RemediationPopulation BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Bryan Maldonado, a research in buildings and transportation at ORNL, is the recipient of the 2022 ASME Old Guard Early Career Award.

ORNL’s Maldonado receives 2022 ASME Old Guard Early Career Award

July 7, 2022
Research

Nanoparticle ‘backpacks’ restore damaged stem cells

July 7, 2022

A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms

July 7, 2022

Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire 

July 7, 2022
Please login to join discussion

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    38 shares
    Share 15 Tweet 10
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceWeaponryViolence/CriminalsVirusVehiclesVaccineVaccinesUrogenital SystemUniversity of WashingtonVirologyWeather/StormsUrbanization

Recent Posts

  • ORNL’s Maldonado receives 2022 ASME Old Guard Early Career Award
  • Nanoparticle ‘backpacks’ restore damaged stem cells
  • A new giant dinosaur gives insight into why many prehistoric meat-eaters had such tiny arms
  • Led by Columbia Engineering, researchers build longest, highly conductive molecular nanowire 
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....