• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Temple scientists poised to gain insight into underpinnings of Alzheimer’s thanks to grant

Bioengineer by Bioengineer
May 11, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lewis Katz School of Medicine at Temple University

(Philadelphia, PA) – Finding ways to optimize energy use is critical to keeping up productivity. This idea applies to the human body overall, as well as to each individual cell that makes up the body. Cells, in fact, go to great lengths to maintain energy levels, frequently increasing the activity of certain proteins and support pathways to compensate for drops in energy production that are brought about by stress or disease.

One way in which cells compensate for flagging energy production and metabolic dysfunction is mitochondrial calcium transport remodeling – a process marked by seemingly harmless changes in the amount of calcium present within mitochondria, the energy-generating batteries of cells. But while beneficial at first, this response may become maladaptive over time, with altered calcium levels inflicting severe damage to mitochondria. In the nervous system, this ultimately impacts cellular activities necessary for memory and learning.

A team of scientists led by John W. Elrod, PhD, Associate Professor in the Center for Translational Medicine at the Lewis Katz School of Medicine at Temple University, has hypothesized that altered mitochondrial calcium transport contributes to Alzheimer’s disease development and progression. But whether and how this happens remains unclear.

Now, thanks to a new three-year, $2.27 million grant from the National Institutes of Health’s National Institute of Neurological Disorders and Stroke, Dr. Elrod and colleagues are poised to gain novel insight into biological mechanisms that may be driving or worsening neurodegeneration. The researchers will investigate potential mechanisms using mouse models of Alzheimer’s disease and a systems biology approach. The work could help identify new drug targets and therapeutic opportunities for Alzheimer’s disease.

“We recently reported that altered mitochondrial calcium transport impacts the progression of neurodegenerative diseases, particularly Alzheimer’s disease,” said Dr. Elrod, who is senior investigator on the new grant. “But very little is known about the mechanisms involved.”

Dr. Elrod and colleagues think that an initial energetic or metabolic stress likely causes cells to change their behavior.

“We suspect that in Alzheimer’s disease, stressed brain cells (neurons) have an energy deficit, which causes the cells to take up more calcium in order to augment energy production. But ultimately the high mitochondrial calcium levels cause maladaptive remodeling and disease.”

Dr. Elrod and colleagues demonstrated that neuronal expression of a calcium transporter known as NCLX is lost in Alzheimer’s disease and that re-expression of NCLX protects against disease development. In particular, by moving calcium out of mitochondria, NCLX prevented the formation of harmful protein aggregates and re-established mitochondrial calcium homeostasis in neurons, effectively rescuing animals from cognitive decline.

Dr. Elrod’s laboratory further discovered that in neurons, loss of expression of a protein known as MICU1 correlates with Alzheimer’s disease progression. MICU1 is a key regulator of mitochondrial calcium uptake. Its loss predisposes the energy-producing organelles to calcium overload.

“Now we want to know if mitochondrial calcium uptake contributes specifically to the development and progression of Alzheimer’s disease,” Dr. Elrod said. “We also want to find out what energy or metabolic deficits are occurring in cells as Alzheimer’s disease develops. Using new genetic tools, we hope to identify metabolic changes in neurons during the course of disease. Defining what cellular stresses are occurring and which metabolic pathways are affected can help us better understand what triggers mitochondrial dysfunction in the first place.”

**Research reported in this publication was supported by grants from the National Institutes of Health (NS121379, HL136954, HL123966, HL123966, HL142271). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

###

Media Contact
Jennifer Reardon
[email protected]

Tags: AlzheimerBiologyCell BiologyMedicine/Healthneurobiology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025
DOG Gene Family in Wheat Drives Seed Dormancy

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025

Discovery of MrSTP20: Sugar Transporter in Salt Stress

October 4, 2025

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carers in Australia: Blessings and Challenges Explored

Gut Microbiome and Hormones in Postmenopausal Breast Cancer

Herbal Remedies for Hypertension: Insights from Trinidad

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.