• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, January 27, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Telomere shortening protects against cancer

Bioengineer by Bioengineer
December 1, 2020
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Laboratory of Cell Biology and Genetics at The Rockefeller University

As time goes by, the tips of your chromosomes–called telomeres–become shorter. This process has long been viewed as an unwanted side-effect of aging, but a recent study shows it is in fact good for you.

“Telomeres protect the genetic material,” says Titia de Lange, Leon Hess Professor at Rockefeller. “The DNA in telomeres shortens when cells divide, eventually halting cell division when the telomere reserve is depleted.”

New results from de Lange’s lab provide the first evidence that telomere shortening helps prevent cancer in humans, likely because of its power to curtail cell division. Published in eLife, the findings were obtained by analyzing mutations in families with exceptional cancer histories, and they present the answer to a decades-old question about the relationship between telomeres and cancer.

A longstanding controversy

In stem cells, including those that generate eggs and sperm, telomeres are maintained by telomerase, an enzyme that adds telomeric DNA to the ends of chromosomes. Telomerase is not present in normal human cells, however, which is why their telomeres wither away. This telomere shortening program limits the number of divisions of normal human cells to about 50.

The idea that telomere shortening could be part of the body’s defense against cancer was first proposed decades ago. Once an early-stage tumor cell has divided 50 times, scientists imagined, depletion of the telomere reserve would block further cancer development. Only those cancers that manage to activate telomerase would break through this barrier.

Clinical observations seemed to support this hypothesis. “Most clinically detectable cancers have re-activated telomerase, often through mutations,” de Lange says. Moreover, mouse experiments showed that shortening telomeres can indeed protect against cancer. Nonetheless, evidence for the telomere tumor suppressor system remained elusive for the past two decades, and its existence in humans remained controversial.

The solution to a decades-old problem

The telomere tumor suppressor pathway can only work if we are born with telomeres of the right length; if the telomeres are too long, the telomere reserve would not run out in time to stop cancer development. Longer telomeres will afford cancer cells additional divisions during which mutations can creep into the genetic code, including mutations that activate telomerase.

For decades, de Lange’s lab has been studying the complex process by which telomeres are regulated. She and others identified a set of proteins that can limit telomere length in cultured human cells, among them a protein called TIN2. When TIN2 is inhibited, telomerase runs wild and over-elongates telomeres. But it was not known whether TIN2 also regulated telomere length at birth.

The stalemate on the telomere tumor suppressor continued until physicians at the Radboud University Medical Center in Holland reached out to de Lange about several cancer-prone families.  The doctors found that these families had mutations in TINF2, the gene that encodes the TIN2 protein instrumental to controlling telomere length. That’s when they asked de Lange to step in.

Isabelle Schmutz, a Women&Science postdoctoral fellow in the de Lange lab, used CRISPR gene-editing technology to engineer cells with precisely the same mutations as those seen in the Dutch families and examined the resulting mutant cells. She found that the mutant cells had fully functional telomeres and no genomic instability. They were, for all intents and purposes, normal healthy cells.

But there was one thing wrong with the cells. “Their telomeres became too long, ” de Lange says.  Similarly, the patient’s telomeres were unusually long. “These patients have telomeres that are far above the 99th percentile,” de Lange says.

“The data show that if you’re born with long telomeres, you are at greater risk of getting cancer, ” says de Lange. “We are seeing how the loss of the telomere tumor suppressor pathway in these families leads to breast cancer, colorectal cancer, melanoma, and thyroid cancers. These cancers would normally have been blocked by telomere shortening. The broad spectrum of cancers in these families shows the power of the telomere tumor suppressor pathway.”

The study is demonstration of the power of basic science to transform our understanding of medicine. “How telomeres are regulated is a fundamental problem,” de Lange says. “And by working on a fundamental problem, we were eventually able to understand the origins of a human disease.”

###

Media Contact
Katherine Fenz
[email protected]

Original Source

https://www.rockefeller.edu/news/29625-telomere-shortening-protects-cancer/

Related Journal Article

http://dx.doi.org/10.7554/eLife.61235

Tags: AgingBiologycancerCell BiologyGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Ludwig Cancer Research study reveals how certain gut bacteria compromise radiotherapy

January 27, 2021
IMAGE

Two anti-viral enzymes transform pre-leukemia stem cells into leukemia

January 26, 2021

University of Cincinnati research unveils possible new combo therapy for head and neck cancer

January 22, 2021

CT identifies patients with high-risk nonalcoholic fatty liver disease (NAFLD)

January 22, 2021
Next Post
IMAGE

Study finds false widow spiders bite can transmit harmful antibiotic-resistant bacteria

IMAGE

Oncotarget launches special collection on breast cancer

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    69 shares
    Share 28 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsBiologyCell BiologyClimate ChangeChemistry/Physics/Materials SciencesEcology/EnvironmentInfectious/Emerging DiseasesGeneticsTechnology/Engineering/Computer SciencePublic HealthcancerMedicine/Health

Recent Posts

  • Patrick Cramer receives the 2021 Louis-Jeantet Prize for Medicine
  • Precision measurements of intracluster light suggest possible link to dark matter
  • Optical scanner design for adaptive driving beam systems can lead to safer night driving
  • Diving into devonian seas: Ancient marine faunas unlock secrets of warming oceans
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In