• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

TalTech chemists’ new method is a significant step towards greener pharmaceutical industry

Bioengineer by Bioengineer
October 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TalTech

The rapid changes in the chemical industry are connected one hand with the depletion of natural resources and deepening of environmental concerns, on the other hand with the growth of environmental awareness. Green, environmentally friendly chemistry is playing an increasingly important role in the sustainable chemical industry.

The TalTech Supramolecular Chemistry Group led by Professor Riina Aav published a research article on the applications of mechanochemistry titled “Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril” in the journal ACS Sustainable Chemistry and Engineering.

Mechanochemistry is a branch of chemistry that studies the effects induced by mechanical action on chemical reactions. Since these reactions take place efficiently in the solid-state phase and do not require the use of solvents that generate toxic residues, it is becoming an increasingly important branch of chemistry, especially in the field of green and sustainable technology.

One of the authors of the article, TalTech Professor of Chemistry Riina Aav says, “Our Supramolecular Chemistry research group is currently one of the most active research groups in this field in Estonia, investigating in depth how to expand the possible applications of the mechanochemical method in the chemicals industry. As chemists, we see this method in particular as a good solution for environmentally friendly synthesis. This means that it is now possible to produce chemicals much faster and completely residue-free.”

Twenty five per cent of pharmaceuticals produced in the chemical industry contain an amide bond. Such pharmaceuticals include e.g. drugs for the treatment of cardiovascular diseases (atorvastatin or Lipitor®), analgesics (Ibuprofen analogues), antibiotics (penicillin and chloramphenicol or Oftan Akvakol), as well as cancer drugs (methotrexate and, inter alia therapeutic peptides such as carfilzomib (KYPROLIS)). Until now, such drugs have conventionally been produced in the chemical industry using solvents. A mechanochemical process involves grinding of chemical substances without the need to use solvents. This means, however, that no toxic waste characteristic of solvent-based production is generated, and in addition, the whole process can take place tens of times faster (e.g. the required active ingredient is created within an hour, whereas the analogous solvent-based reaction requires 24-hours).

“I would like to point out that we were able to replace the organic catalysts used so far with an inorganic one to achieve the result, because dissolution of components is not necessary in mechanochemical synthesis. This further reduced our carbon footprint. We also studied the mechanism of the mechanochemical process, and the results show that the formation pathways of amides or peptides, which are essential for the manufacture of pharmaceutical products, are similar to the ones involved in protein formation in our bodies. The mechanochemical method developed by us is much simpler – the necessary elements are ground and the product obtained is washed with water,” a co-author and senior researcher Dzmitry Kananovich, says.

It is a faster and and much more environmentally friendly chemical process compared to the solvent-based method. In addition, this method can be used to produce new molecular receptors biotin[6]urils, which scientists plan to apply as “chemical noses” upon developing residue capturing molecular containers.

“The developed method is great news for chemical and pharmaceutical industry, who are interested in sustainable and residue-free chemical technology solutions not only in the production of medicines, but also food supplements, detergents and other products. Our research group is a member of the European Cooperation in Science and Technology action “Mechanochemistry for Sustainable Industry”, which will hopefully ensure practical application of the mechanochemical methods in the chemical industry in the near future,” Riina Aav says.

###

Source: ACS Sustainable Chemistry “Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril” 06.10.2020 http://dx.doi.org/10.1021/acssuschemeng.0c05558

Additional information: Professor at TalTech’s Division of Chemistry Riina Aav, [email protected]

Kersti Vähi, TalTech Research Communications Officer

Media Contact
Riina Aav
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acssuschemeng.0c05558

Related Journal Article

http://dx.doi.org/10.1021/acssuschemeng.0c05558

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

Bright Red-NIR Glow from Carbodicarbene Borenium Ions

October 6, 2025
blank

Transforming Biogas Waste into an Effective Solution for Ammonium Pollution Cleanup

October 6, 2025

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    74 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Insights into Endothelial Cell Death in Sepsis

LVSG Effects on LES and GERD: Meta-Analysis

PRDM6: A Key Protector Against PCOS

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.