• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, March 7, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

TalTech chemists’ new method is a significant step towards greener pharmaceutical industry

Bioengineer by Bioengineer
October 27, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TalTech

The rapid changes in the chemical industry are connected one hand with the depletion of natural resources and deepening of environmental concerns, on the other hand with the growth of environmental awareness. Green, environmentally friendly chemistry is playing an increasingly important role in the sustainable chemical industry.

The TalTech Supramolecular Chemistry Group led by Professor Riina Aav published a research article on the applications of mechanochemistry titled “Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril” in the journal ACS Sustainable Chemistry and Engineering.

Mechanochemistry is a branch of chemistry that studies the effects induced by mechanical action on chemical reactions. Since these reactions take place efficiently in the solid-state phase and do not require the use of solvents that generate toxic residues, it is becoming an increasingly important branch of chemistry, especially in the field of green and sustainable technology.

One of the authors of the article, TalTech Professor of Chemistry Riina Aav says, “Our Supramolecular Chemistry research group is currently one of the most active research groups in this field in Estonia, investigating in depth how to expand the possible applications of the mechanochemical method in the chemicals industry. As chemists, we see this method in particular as a good solution for environmentally friendly synthesis. This means that it is now possible to produce chemicals much faster and completely residue-free.”

Twenty five per cent of pharmaceuticals produced in the chemical industry contain an amide bond. Such pharmaceuticals include e.g. drugs for the treatment of cardiovascular diseases (atorvastatin or Lipitor®), analgesics (Ibuprofen analogues), antibiotics (penicillin and chloramphenicol or Oftan Akvakol), as well as cancer drugs (methotrexate and, inter alia therapeutic peptides such as carfilzomib (KYPROLIS)). Until now, such drugs have conventionally been produced in the chemical industry using solvents. A mechanochemical process involves grinding of chemical substances without the need to use solvents. This means, however, that no toxic waste characteristic of solvent-based production is generated, and in addition, the whole process can take place tens of times faster (e.g. the required active ingredient is created within an hour, whereas the analogous solvent-based reaction requires 24-hours).

“I would like to point out that we were able to replace the organic catalysts used so far with an inorganic one to achieve the result, because dissolution of components is not necessary in mechanochemical synthesis. This further reduced our carbon footprint. We also studied the mechanism of the mechanochemical process, and the results show that the formation pathways of amides or peptides, which are essential for the manufacture of pharmaceutical products, are similar to the ones involved in protein formation in our bodies. The mechanochemical method developed by us is much simpler – the necessary elements are ground and the product obtained is washed with water,” a co-author and senior researcher Dzmitry Kananovich, says.

It is a faster and and much more environmentally friendly chemical process compared to the solvent-based method. In addition, this method can be used to produce new molecular receptors biotin[6]urils, which scientists plan to apply as “chemical noses” upon developing residue capturing molecular containers.

“The developed method is great news for chemical and pharmaceutical industry, who are interested in sustainable and residue-free chemical technology solutions not only in the production of medicines, but also food supplements, detergents and other products. Our research group is a member of the European Cooperation in Science and Technology action “Mechanochemistry for Sustainable Industry”, which will hopefully ensure practical application of the mechanochemical methods in the chemical industry in the near future,” Riina Aav says.

###

Source: ACS Sustainable Chemistry “Mechanochemical Synthesis of Amides with Uronium-Based Coupling Reagents: A Method for Hexa-amidation of Biotin[6]uril” 06.10.2020 http://dx.doi.org/10.1021/acssuschemeng.0c05558

Additional information: Professor at TalTech’s Division of Chemistry Riina Aav, [email protected]

Kersti Vähi, TalTech Research Communications Officer

Media Contact
Riina Aav
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acssuschemeng.0c05558

Related Journal Article

http://dx.doi.org/10.1021/acssuschemeng.0c05558

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Study shows cactus pear as drought-tolerant crop for sustainable fuel and food

March 5, 2021
IMAGE

Christopher Tunnell wins NSF CAREER Award

March 5, 2021

Tantalizing signs of phase-change ‘turbulence’ in RHIC collisions

March 5, 2021

Species are our livelihoods

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In