• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Synthesizing textiles from sugar

Bioengineer by Bioengineer
April 1, 2014
in Bioengineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the future, the clothes you wear could be made from sugar. Researchers at the Institute of Bioengineering and Nanotechnology (IBN) have discovered a new chemical process that can convert adipic acid directly from sugar.

Synthesizing textiles from sugar

The IBN research team, who invented the new green chemistry method to turn sugar into adipic acid (from left) Dr Ting Lu, Dr Yugen Zhang, Dr Xiukai Li and Dr Guangshun Yi.

Adipic acid is an important chemical used to produce nylon for apparel and other everyday products like carpets, ropes and toothbrush bristles. Commercially, adipic acid is produced from petroleum-based chemicals through the nitric acid oxidation process, which emits large amounts of nitrous oxides, a major greenhouse gas that causes global warming.

IBN Executive Director Professor Jackie Y. Ying said, “In the face of growing environmental concerns over the use of fossil fuels and diminishing natural resources, there is an increasing need for a renewable source for energy and chemicals. We have designed a sustainable and environmentally friendly solution to convert sugar into adipic acid via our patented catalytic process technology.”

Bio-based adipic acid can be synthesized from mucic acid, which is oxidized from sugar; and the mucic acid can be obtained from fruit peels. Current processes are either performed using multiple steps with low product efficiency and yield, or under harsh reaction conditions using high-pressure hydrogen gas and strong acids, which are costly and unsafe.

The new chemical catalytic protocol designed by IBN is simple, efficient and green. To convert mucic acid to adipid acid, the target reaction is deoxydehydration, that is, oxygen and water will be removed simultaneously by reduction and dehydration. The researchers found that by combining deoxydehydration and the transfer hydrogenation reaction – adding an alcohol solvent – in one reactor, they could obtain a high yield of adipic acid at 99% of the starting material. Existing protocols can only achieve a yield of around 60%.

This method is ideal for industrial development because the process can be performed in one or two steps, the end product is pure, and the reaction conditions are mild and safe.

Dr Yugen Zhang, IBN Group Leader in green chemistry and energy said, “This work shows the tremendous potential of developing bio-based adipic acid. We are excited that our new protocol can efficiently convert adipic acid from sugar, bringing us one step closer toward industrialization. To complete this green technology, we are now working on using raw biomass as the feedstock.”

This finding was published recently in the leading Chemistry journal Angewandte Chemie International Edition. The work was funded by a grant from the A*STAR Science and Engineering Council to develop chemicals from biomass.

Dr Yugen Zhang’s group also holds patented technologies for converting other valuable chemical intermediates such as 5-hydroxymethylfurfural (HMF) and furfuraldicarboxylic acid (FDCA) from sugar. HMF is a key platform chemical that can be converted to biofuels and biochemicals, and FDCA can be used to make plastics and polyester. IBN seeks industrial collaborations to commercialize its portfolio of green technologies.

Story Source:

The above story is based on materials provided by Agency for Science, Technology and Research (A*STAR), Singapore, Elena Tan and Nidyah Sani.

Share13Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Salivary Proteins of Psylla: Effects on Host Plants

AI Advances Kidney Stone Diagnosis Through Imaging

Optimizing Combine Harvester Speed to Minimize Paddy Loss

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.