• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sweet coating for sour bones

Bioengineer by Bioengineer
February 12, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Zhenzhen Wang, University of Macau

Osteoporosis is a leading global health challenge. Besides its own adverse effects, it also impairs the function of bone implants – normally made of a metal called titanium (Ti). Because there is less bone than normal in the implantation site, the implants could easily loosen, and persistent inflammation often accompanies.

Recently, Chinese scientists from the University of Macau and Nanjing University, in collaboration with National Dental Centre Singapore, invent a bioactive coating that can be chemically linked onto normal Ti surface. This coating, made from a chemically-modified glycan (a string of sugars), can sequentially turn on and off inflammation on bone implants. When applied under osteoporotic conditions, it first turns on “good inflammation” by instructing host macrophages to release the molecules that can activate bone cells and promote healing; when the bone cells grow and function to an extent, they naturally secrete an enzyme, called alkaline phosphatase, to cut the chemically-modified glycan from the Ti surface. This “sugar-coated bullets” can specifically kill macrophages to turn off “bad inflammation” for better healing and higher safety.

The lead contact and corresponding author of this paper, Prof Chunming Wang at the University of Macau, said: “Interestingly, these macrophages to be killed in the latter part of this healing process, are exactly the guys who have made the major contribution to release pro-bone forming cytokines in the earlier stage. So, we described this design as a ‘bridge-burning’ strategy.” He indicates that this coating’s main advantage is to maximize the power of the limited number of bone cells around the implants under osteoporosis.

The co-corresponding author, Prof Lei Dong at Nanjing University, added that under these pathological conditions it is unrealistic to sharply increase the number or stimulate the function of bone cells around the implants to achieve better bone-implant integration. “Our method harnesses the inherent power of immune responses to enhance implanting efficacy, without using complicated methods that might bring about safety issues. ”

Based on this coating’s favourable performance in a rat osteoporosis model, both investigators anticipate next-stage research to be carried out in larger animals. This study was published on 10 Feb 2021 in Advanced Functional Materials, a premier journal in materials science, and selected to feature on the Front Cover of the issue.

###

Media Contact
Chunming Wang
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/adfm.202007408

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyEndocrinologyHealth CareImmunology/Allergies/AsthmaMedicine/HealthOrthopedic MedicinePharmaceutical SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Linking Algorithmic Fairness to AI Healthcare Outcomes

December 19, 2025

K-Wire’s Role in Preventing Hinge Fractures Explored

December 19, 2025

Bridging Fundamental Research and Applications in Lithium CO2 Batteries

December 19, 2025

Rhno1 Deletion Impairs DNA Damage Response in Mice

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking Algorithmic Fairness to AI Healthcare Outcomes

K-Wire’s Role in Preventing Hinge Fractures Explored

Bridging Fundamental Research and Applications in Lithium CO2 Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.