• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, June 27, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Surprising spider hair discovery may inspire stronger adhesives

Bioengineer by Bioengineer
June 18, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Engineers impressed by the functional great diversity of hairs on spider legs

IMAGE

Credit: B Poerschke, SN Gorb and F Schaber

Just how do spiders walk straight up — and even upside-down across — so many different types of surfaces? Answering this question could open up new opportunities for creating powerful, yet reversible, bioinspired adhesives. Scientists have been working to better understand spider feet for the past several decades. Now, a new study in Frontiers in Mechanical Engineering is the first to show that the characteristics of the hair-like structures that form the adhesive feet of one species — the wandering spider Cupiennius salei — are more variable than previously thought.

“When we started the experiments, we expected to find a specific angle of best adhesion and similar adhesive properties for all of the individual attachment hairs,” says the group leader of the study, Dr Clemens Schaber of the University of Kiel in Germany. “But surprisingly, the adhesion forces largely differed between the individual hairs, e.g. one hair adhered best at a low angle with the substrate while the other one performed best close to perpendicular.”

The feet of this species of spider are made up of close to 2,400 tiny hairs or ‘setae’ (one hundredth of one millimeter thick). Schaber, and his colleagues Bastian Poerschke and Stanislav Gorb, collected a sample of these hairs and then measured how well they stuck to a range of rough and smooth surfaces, including glass. They also looked at how well the hairs performed at various contact angles.

Different types of hair work together

Unexpectedly, each hair showed unique adhesive properties. When the team looked at the hairs under a powerful microscope, they also found that each one showed clearly different — and previously unrecognized — structural arrangements. The team believes that this variety may be key to how spiders can climb so many surface types.

This current work studied only a small number of the thousands of hairs on each foot, and it’s beyond the scope of existing resources to consider studying them all. But the team expects that not all of the hairs are unique, and that it might be possible to find clusters or repeating patterns instead.

Bioinspired applications possible

“Although it is still very difficult to fabricate nanostructures like those of the spider–and especially to achieve the stability and reliability of the natural materials — our findings can further optimize existing models for reversible and residue-free artificial adhesives,” says Schaber. “The principle of different shapes and alignments of adhesive contacts as found in the spider attachment system can improve the attachment ability of bioinspired materials to a broad range of substrates with different properties.”

###

Media Contact
Mischa Dijkstra
[email protected]

Related Journal Article

http://dx.doi.org/10.3389/fmech.2021.702297

Tags: BiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesDermatologyEcology/EnvironmentEvolutionMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Desert locust (Schistocerca gregaria)

USDA-ARS releases genome of the voracious desert locust

June 27, 2022
Robot Bias

Flawed AI makes robots racist, sexist

June 24, 2022

Microscopy technique enables 3D super-resolution nanometre-scale imaging

June 24, 2022

Porous cells lead to poorer livers

June 24, 2022
Please login to join discussion

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesViolence/CriminalsUrbanizationUniversity of WashingtonWeather/StormsVaccinesVirologyUrogenital SystemZoology/Veterinary ScienceVaccineVirusWeaponry

Recent Posts

  • USDA-ARS releases genome of the voracious desert locust
  • Repairing nature with DNA technology
  • The Sussex researchers who used international collaboration and 3D printing to stem PPE shortages in Nigeria
  • Predicting the future: A quick, easy scan can reveal late-life dementia risk
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....