• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, January 10, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Surfaces can be designed with antiviral properties to mitigate COVID-19

Bioengineer by Bioengineer
May 4, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An optimally designed surface can speed the decay of a viral load

IMAGE

Credit: S. Chatterjee, J.S. Murallidharan, A. Agrawal, and R. Bhardwaj

WASHINGTON, May 4, 2021 — If a respiratory droplet from a person infected with COVID-19 lands on a surface, it becomes a possible source of disease spread. This is known as the fomite route of disease spread, in which the aqueous phase of the respiratory droplet serves as a medium for virus survival.

The lifespan of the respiratory droplet dictates how likely a surface is to spread a virus. While 99.9% of the droplet’s liquid content evaporates within a few minutes, a residual thin film that allows the virus to survive can be left behind.

This begs the question: Is it possible to design surfaces to reduce the survival time of viruses, including the coronavirus that causes COVID-19? In Physics of Fluids, from AIP Publishing, IIT Bombay researchers present their work exploring how the evaporation rate of residual thin films can be accelerated by tuning surfaces’ wettability and creating geometric microtextures on them.

An optimally designed surface will make a viral load decay rapidly, rendering it less likely to contribute to the spread of viruses.

“In terms of physics, the solid-liquid interfacial energy is enhanced by a combination of our proposed surface engineering and augmenting the disjoining pressure within the residual thin film, which will speed drying of the thin film,” said Sanghamitro Chatterjee, lead author and a postdoctoral fellow in the mechanical engineering department.

The researchers were surprised to discover that the combination of a surface’s wettability and its physical texture determine its antiviral properties.

“Continuously tailoring any one of these parameters wouldn’t achieve the best results,” said Amit Agrawal, a co-author. “The most conductive antiviral effect lies within an optimized range of both wettability and texture.”

While previous studies reported antibacterial effects by designing superhydrophobic (repels water) surfaces, their work indicates antiviral surface design can be achieved by surface hydrophilicity (attracts water).

“Our present work demonstrates that designing anti-COVID-19 surfaces is possible,” said Janini Murallidharan, a co-author. “We also propose a design methodology and provide parameters needed to engineer surfaces with the shortest virus survival times.”

The researchers discovered that surfaces with taller and closely packed pillars, with a contact angle of around 60 degrees, show the strongest antiviral effect or shortest drying time.

This work paves the way for fabricating antiviral surfaces that will be useful in designing hospital equipment, medical or pathology equipment, as well as frequently touched surfaces, like door handles, smartphone screens, or surfaces within areas prone to outbreaks.

“In the future, our model can readily be extended to respiratory diseases like influenza A, which spread through fomite transmission,” said Rajneesh Bhardwaj, a co-author. “Since we analyzed antiviral effects by a generic model independent of the specific geometry of texture, it’s possible to fabricate any geometric structures based on different fabrication techniques — focused ion beams or chemical etching — to achieve the same outcome.”

###

The article “Designing antiviral surfaces to suppress the spread of COVID-19” is authored by Sanghamitro Chatterjee, Janani Srree Murallidharan, Amit Agrawal, and Rajneesh Bhardwaj. It will appear in Physics of Fluids on May 4, 2021 (DOI: 10.1063/5.0049404). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0049404.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex fluids. See https://aip.scitation.org/journal/phf.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0049404

Tags: BiologyChemistry/Physics/Materials SciencesEpidemiologyInfectious/Emerging DiseasesMedicine/HealthVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    145 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

Revolutionary Deep Learning Model Enhances Rainfall Forecasting

Lipedema Definition and Management: 2023 Global Consensus

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.