• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Sulfur enhances carbon storage in the Black Sea

Bioengineer by Bioengineer
June 17, 2021
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study finds new explanation for the accumulation of organic compounds in oxygen-depleted marine areas

IMAGE

Credit: © Nelli Sergeeva

The Black Sea is an unusual body of water: below a depth of 150 metres the dissolved oxygen concentration sinks to around zero, meaning that higher life forms such as plants and animals cannot exist in these areas. At the same time, this semi-enclosed sea stores comparatively large amounts of organic carbon. A team of researchers led by Dr Gonzalo V. Gomez-Saez and Dr Jutta Niggemann from the University of Oldenburg’s Institute for Chemistry and Biology of the Marine Environment (ICBM) has now presented a new hypothesis as to why organic compounds accumulate in the depths of the Black Sea – and other oxygen-depleted waters in the scientific journal Science Advances.

The researchers posit that reactions with hydrogen sulfide play an important role in stabilizing carbon compounds. “This mechanism apparently contributes to the fact that there is more than twice as much organic carbon in the waters of the Black Sea as in oxygen-rich marine areas,” says Niggemann. “This provides a negative feedback in the climate system that could counteract global warming over geological periods.”

In the Black Sea, which covers an area almost twice the size of France, conditions rarely found in other marine regions have prevailed for around 7,000 years: stable stratification largely prevents the mixing of surface and deep waters. The water in the upper 150 metres is low in salt and oxygen-rich, and comes mainly from rivers like the Danube. Below that, there is a layer of higher density saline water that flows into the Black Sea from the Mediterranean via the Bosporus.

“When you open a water sample from the deeper areas of the Black Sea, the smell of rotten eggs almost knocks you over,” Niggemann says. On the surface, however, there is no indication that the Black Sea is a stagnant body of water in which, due to the lack of oxygen, bacteria produce foul-smelling hydrogen sulfide.

Hydrogen sulfide reacts with dissolved organic matter

As the new study shows, this highly reactive molecule binds with substances from a diverse group of carbonaceous materials that are present in every litre of seawater. These substances are known as dissolved organic matter (DOM) – a complex mixture of countless different molecules that are the product of decomposed organic matter or bacterial metabolic processes.

“We were able to show very clearly that hydrogen sulfide reacts with the extremely diluted organic matter directly in the water,” Niggemann explains. The products of the reaction are potentially more durable than the starting materials and therefore accumulate in the water.

The team compared water samples from different locations in the Black Sea and other seas and rivers. Using various analytical methods, including the ultrahigh resolution mass spectrometer of the Marine Geochemistry research group at the University of Oldenburg, the researchers were able to characterize the dissolved organic matter in detail.

They found that almost a fifth of the organic molecules in the anoxic areas of the Black Sea contained sulfur – significantly more than in other seas. In addition, the team was able to establish that a high proportion of these compounds are only found in these areas, leading the researchers to conclude that the sulfur compounds form there through chemical reactions in the sulfidic water.

Negative feedback relevant on geological time scales

Given that huge amounts of carbon are stored in dissolved organic matter – the world’s oceans contain roughly as much dissolved organic carbon as there is CO2 in the Earth’s atmosphere – the results of this new study are also relevant for the climate. “The volume of ocean waters completely depleted of oxygen quadrupled between 1960 and 2010.

Consequently, this sulfur-based mechanism of carbon storage could influence the chemistry of the oceans in the future,” says Gomez-Saez, the lead author of the study. But this negative feedback is too weak to have a noticeable impact on climate change under the current conditions, he adds. In geological history, however, there have been several periods during which large areas of the oceans were oxygen-deficient. During these periods this effect could have contributed to long-term removal of carbon dioxide from the atmosphere.

The water samples from the Black Sea were taken during an expedition with the research vessel Maria S. Merian. In addition to the team from the ICBM, researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in Bremerhaven, the MARUM – Center for Marine Environmental Sciences of the University of Bremen, and the Max Planck Institute for Marine Microbiology in Bremen participated in the study.

###

Media Contact
Jutta Niggemann
[email protected]

Original Source

https://uol.de/en/news/article/sulfur-enhances-carbon-storage-in-the-black-sea-1-5160

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abf6199

Tags: Climate ChangeClimate ScienceEarth ScienceGeophysicsMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Perillyl Alcohol Targets Toxoplasma via Isoprenylation Genes

Perillyl Alcohol Targets Toxoplasma via Isoprenylation Genes

August 5, 2025
Nano vs. Micro Plastics Impact on Live Algae

Nano vs. Micro Plastics Impact on Live Algae

August 5, 2025

Why Tension Drives Short-Form Video Addiction

August 5, 2025

Curcuma Compounds and UVA Alleviate Psoriasis in Mice

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    70 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Perillyl Alcohol Targets Toxoplasma via Isoprenylation Genes

Nano vs. Micro Plastics Impact on Live Algae

Why Tension Drives Short-Form Video Addiction

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.