• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study shows potential for reduced methane from cows

Bioengineer by Bioengineer
July 8, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Adelaide

An international team of scientists has shown it is possible to breed cattle to reduce their methane emissions.

Published in the journal Science Advances, the researchers showed that the genetics of an individual cow strongly influenced the make-up of the microorganisms in its rumen (the first stomach in the digestive system of ruminant animals which include cattle and sheep).

“What we showed is that the level and type of methane-producing microbes in the cow is to a large extent controlled by the cow’s genetic makeup,” says one of the project’s leaders and co-author Professor John Williams, from the University of Adelaide’s School of Animal and Veterinary Sciences. “That means we could select for cattle which are less likely to have high levels of methane-producing bacteria in their rumen.”

Cattle and other ruminants are significant producers of the greenhouse gas methane – contributing 37 per cent of the methane emissions resulting from human activity. A single cow on average produces between 70 and 120 kg of methane per year and, worldwide, there are about 1.5 billion cattle.

The study comes out of a project called RuminOmics, led by the Rowett Institute at the University of Aberdeen and involving the Parco Tecnologico Padano in Italy (where Professor Williams used to work), the Ben-Gurion University of the Negev in Israel, and a number of other institutions in Europe and the US.

The researchers analysed the microbiomes from ruminal fluid samples of 1000 cows, along with measuring the cows’ feed intake, milk production, methane production and other biochemical characteristics. Although this study was carried out on dairy cows, the heritability of the types of microbes in the rumen should also apply to beef cattle.

“Previously we knew it was possible to reduce methane emissions by changing the diet,” says Professor Williams. “But changing the genetics is much more significant – in this way we can select for cows that permanently produce less methane.”

Professor Williams says breeding for low-methane cattle will, however, depend on selection priorities and how much it compromises selection for other desired characteristics such as meat quality, milk production or disease resistance.

“We now know it’s possible to select for low methane production,” he says. “But it depends on what else we are selecting for, and the weighting that is placed on methane – that’s something that will be determined by industry or society pressures.”

The researchers also found a correlation, although not as high, between the cows’ microbiomes and the efficiency of milk production.

“We don’t yet know, but if it turned out that low-methane production equated to greater efficiencies of production – which could turn out to be true given that energy is required to produce the methane – then that would be a win, win situation,” Professor Williams says.

###

This research, from the Davies Research Centre at the University of Adelaide’s Roseworthy campus, aligns with the University’s industry engagement priority in agrifood and wine, and in tackling the grand challenge of environmental sustainability.

Media Contact:

Robyn Mills, Media Officer. Phone: +61 8 8313 6341, Mobile: +61 (0)410 689 084, [email protected]

Media Contact
John Williams
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.aav8391

Tags: Agricultural Production/EconomicsAgricultureClimate ChangeEcology/EnvironmentGeneticsMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025
Edo Cattle Market Study: High Tick Diversity Observed

Edo Cattle Market Study: High Tick Diversity Observed

October 7, 2025

Brain-on-a-Chip Technology Uncovers Mechanisms of Brain Damage in Sepsis and Neurodegenerative Diseases

October 7, 2025

How Sleep Patterns Influence Health, Cognition, Lifestyle, and Brain Structure

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    996 shares
    Share 398 Tweet 249
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KDM4B Regulates ERα in Vascular Cell Calcification

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

Cube-Shaped CoSe2/Fe7Se8 Composites Boost Supercapacitor Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.