Mechanical stress can cause fatigue not only in synthetic materials, but also in mammalian tissues like collagen.
Credit: Photo: HITS
It has been known for many decades that synthetic polymers subjected to mechanical stress generate mechanoradicals by rupture of chemical bonds. But could those harmful and highly reactive radicals also form in our tissues when stretched?
Scientists from the Molecular Biomechanics Group at HITS tackled this question by taking a closer look at collagen, the protein which holds us together – literally – and provides structural and mechanical stability to all our connective tissues like bones, tendons, ligaments, and skin. “In this role it is under perpetual mechanical load and as such the perfect candidate”, says Frauke Graeter, who led the research at HITS. Together with colleagues from Homburg, Frankfurt and Seattle, her team showed in a series of especially devised experiments that excessive mechanical stress on collagen produces radicals. Knowing that radicals are known to cause damage and oxidative stress in the body, this finding was critical for the researchers.
“We managed to mount and pull a rat tail fascicle directly in the Electron-paramagnetic resonance cavity to monitor radical formation due to force in real time”, explains Christopher Zapp, PhD student in GraeterĀ“s team, the experimental set-up. Additional Molecular Dynamics simulations of the collagen fibril, comprising millions of atoms, helped to explain the observations: Chemical bonds break when collagen is stretched. But the resulting harmful radicals are quickly scavenged by nearby aromatic residues, so-called DOPAs. “Not only did we find stable radicals in collagen tissue, we also discovered DOPA residues in collagen, a modification that protects collagen against further damage.” The DOPA radicals then finally convert into hydrogen peroxide, an important oxidative molecule in the body. Collagen is therefore not just a mere bearer of force, it can also control its consequences.
“It was a challenging task to make sense of the peculiar radical signal we observed in the stressed biomaterial”, adds Reinhard Kappl from the Department of Biophysics at Saarland University and co-author of the study. “It needed the combination of expertise from different labs for a consistent picture.”
The study suggests that collagen has evolved as a radical sponge to combat damage. “We show that collagen protects itself from the radicals. Still, stretching this mechanism beyond its limits can eventually lead to oxidation-mediated pathologies, from pain to inflammation”, explains Agnieszka Obarska-Kosinska from HITS.
The findings might not only explain why playing football can at times be really painful, they are also a promising starting point for improving tissue repair and transplantation, for example in sports medicine.
###
Press Contact:
Dr. Peter Saueressig
Public Relations
Heidelberg Institute for Theoretical Studies (HITS)
Tel: +49 6221 533 245
[email protected]
https:/
Scientific Contact:
Prof. Dr. Frauke Graeter
Group Leader Molecular Biomechanics (MBM)
Heidelberg Institute for Theoretical Studies (HITS)
Phone: +49 6221 533 267
[email protected]
Media Contact
Peter Saueressig
[email protected]
Original Source
https:/
Related Journal Article
http://dx.