• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 1, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Story tips: Volcanic microbes, unbreakable bonds and flood mapping

Bioengineer by Bioengineer
January 19, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Anna-Louise Reysenbach/NSF, ROV Jason and 2018 ©Woods Hole Oceanographic Institution

Biology – Volcanic microbes

Oak Ridge National Laboratory contributed to an international study that found almost 300 novel types of microbes living near a deep sea volcano. These microbes, which could be used in biotechnology, reveal new insights about their extreme underwater environment.

Two distinct communities of heat-loving and many acid-loving microbes live near Brother’s Volcano, located about 200 miles northeast of New Zealand and 6,000 feet underwater. Known as extremophiles, these microbes thrive in water heated by magma and hydrothermal vents.

Though they live close to one another, the microbial communities reflect differences in water chemistry and temperature from geological features. In analyzing the new bacterial and archaeal families, ORNL’s Mircea Podar thinks microbes like these can help better characterize extreme environments.

“We’re heading to a point where microbes can be very informative about the environment they came from and even reflect some of the past,” Podar said. “With more data, we can use microbes as a proxy to characterize environments where traditional measurements are challenging to capture.”

Media Contact: Kim Askey, 865.576.2841, [email protected]

Image: https://www.ornl.gov/sites/default/files/2021-01/Hydrothermal%20vent.jpg

Caption: Deep-sea hydrothermal vent chimneys on Brother’s Volcano’s northwest caldera wall create a unique environment for microbes. Credit: Anna-Louise Reysenbach/NSF, ROV Jason and 2018 ©Woods Hole Oceanographic Institution

Image: https://www.ornl.gov/sites/default/files/2021-01/Magmatic%20vent.jpg

Caption: Magmatic hydrothermal venting at the cone site in Brother’s Volcano creates a microbial community distinctly different from those at nearby geological features. Credit: Anna-Louise Reysenbach, NSF, ROV Jason and 2018 ©Woods Hole Oceanographic Institution

Image: https://www.ornl.gov/sites/default/files/2021-01/IMG_0546v2.jpg

Caption: ORNL contributed to the international study, which was led by Portland State University, and leveraged submersible technology from Woods Hole Oceanographic Institute. Credit: Anna-Louise Reysenbach

Buildings – The unbreakable bond

Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use in industrial applications.

Elastomers, commonly used in the construction industry as sealants, are known for their durability. However, they can develop cracks when exposed to certain environments, leading to air and water leaks.

In a study, ORNL researchers used a blend of a self-healing polymer with curable elastomers to produce a series of self-healable and highly adhesive materials. The team proved that these elastomers can self-repair in ambient temperatures and conditions, as well as underwater, with their adhesive force only minimally impacted by surface dust.

“These tough elastomers can be made simply and efficiently through a scalable process, enabling a wider range of uses for the building, automotive and electronics industries,” ORNL’s Diana Hun said.

Media Contact: Jennifer Burke, 865.414.6835, [email protected]

Image: https://www.ornl.gov/sites/default/files/2021-01/Buildings%20-%20Unbreakable%20bond-%20lr.png

Caption: ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. Credit: ORNL/U.S. Dept. of Energy

Modeling – Mapping the flood

A new tool from Oak Ridge National Laboratory can help planners, emergency responders and scientists visualize how flood waters will spread for any scenario and terrain.

The Two-dimensional Runoff Inundation Toolkit for Operational Needs, or TRITON, leverages the power of modern supercomputing to quickly create detailed flood forecasts based on meteorology, hydrology, terrain and surface conditions.

Free and available for use, TRITON can be downloaded in formats compatible with standard computer systems and with advanced architectures such as ORNL’s Summit supercomputer. Running the model on Summit’s modern architecture speeds processing by 40 times compared to conventional high-performance computing.

“The ultimate aim of this model is to support operational inundation forecasting for a range of applications, from infrastructure safety to national security,” said ORNL’s Shih-Chieh Kao who leads the project. “Understanding how a flood wave will propagate across a region or city enables appropriate planning and response.”

Media Contact: Kim Askey, 865.576.2841, [email protected]

Video: https://youtu.be/mgo78s7iJ7g
Image: https://www.ornl.gov/sites/default/files/2021-01/TRITON%20screenshot.png

Caption: The TRITON model provides a detailed visualization of the flooding that resulted when Hurricane Harvey stalled over Houston for four days in 2017. Credit: Mario Morales-Hernández/ORNL, U.S. Dept. of Energy

###

Media Contact
Sara Shoemaker
[email protected]

Original Source

https://www.ornl.gov/news/story-tips

Related Journal Article

http://dx.doi.org/10.1073/pnas.2019021117

Tags: Biomedical/Environmental/Chemical EngineeringEarth ScienceEcology/EnvironmentGeology/SoilHydrology/Water ResourcesIndustrial Engineering/ChemistryMaterialsOceanographyPolymer ChemistryTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Metal whispering: Finding a better way to recover precious metals from electronic waste

March 1, 2021
IMAGE

Second order optical merons, or light pretending to be a ferromagnet

March 1, 2021

NAU astronomer receives prestigious 2021 Cottrell Scholar Award

March 1, 2021

Vilcek Foundation allocates $150,000 for 2022 prizes honoring immigrant scientists

March 1, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    650 shares
    Share 260 Tweet 163
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Ecology/EnvironmentMedicine/HealthCell BiologyTechnology/Engineering/Computer ScienceGeneticsChemistry/Physics/Materials SciencesClimate ChangeBiologyPublic HealthInfectious/Emerging DiseasesMaterialscancer

Recent Posts

  • Oncotarget: Exploiting the metabolic dependencies of the broad amino acid transporter SLC6A14
  • How a plant regulates its growth
  • Oncotarget: Effect of liver fibrosis on survival in patients with intrahepatic cholangiocarcinoma
  • Oncotarget: Identification intermediate-risk subgroups in metastatic clear-cell renal cell carcinoma
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In