• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Stomach acid-powered micromotors get their first test in a living animal

Bioengineer by Bioengineer
January 27, 2015
in Bioengineering
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of California, San Diego have shown that a micromotor fueled by stomach acid can take a bubble-powered ride inside a mouse. These tiny motors, each about one-fifth the width of a human hair, may someday offer a safer and more efficient way to deliver drugs or diagnose tumors.

micro motor

Scanning electron microscopy image of the micromotors. Photo Credit: Jacobs School of Engineering/UC San Diego

The experiment is the first to show that these micromotors can operate safely in a living animal, said Professors Joseph Wang and Liangfang Zhang of the NanoEngineering Department at the UC San Diego Jacobs School of Engineering.

Wang, Zhang and others have experimented with different designs and fuel systems for micromotors that can travel in water, blood and other body fluids in the lab. “But this is the first example of loading and releasing a cargo in vivo,” said Wang. “We thought it was the logical extension of the work we have done, to see if these motors might be able to swim in stomach acid.”

Stomach acid reacts with the zinc body of the motors to generate a stream of hydrogen microbubbles that propel the motors forward. In their study published in the journal ACS Nano, the researchers report that the motors lodged themselves firmly in the stomach lining of mice. As the zinc motors are dissolved by the acid, they disappear within a few days leaving no toxic chemical traces.

When they loaded up the motors with a test “payload” of gold nanoparticles, Wang, Zhang and their coworkers found that more of these particles reached the stomach lining when carried by the motors, compared to when the particles alone were swallowed. The motors delivered 168 nanograms of gold per gram of stomach tissue, compared to the 53.6 nanograms per gram that was delivered through the traditional oral route.

“This initial work verifies that this motor can function in a real animal and is safe to use,” said Zhang.

In the experiment, the mice ingested tiny drops of solution containing hundreds of the micromotors. The motors become active as soon as they hit the stomach acid and zoom toward the stomach lining at a speed of 60 micrometers per second. They can self-propel like this for up to 10 minutes.This propulsive burst improved how well the cone-shaped motors were able to penetrate and stick in the mucous layer covering the stomach wall, explained Zhang. “It’s the motor that can punch into this viscous layer and stay there, which is an advantage over more passive delivery systems,” he said.

The researchers found that nearly four times as many zinc micromotors found their way into the stomach lining compared with platinum-based micromotors, which don’t react with and can’t be fueled by stomach acid.

Wang said it may be possible to add navigation capabilities and other functions to the motors, to increase their targeting potential. Now that his team has demonstrated that the motors work in living animals, he noted, similar nanomachines soon may find a variety of applications including drug delivery, diagnostics, nanosurgery and biopsies of hard-to-reach tumors.

Story Source:

The above story is based on materials provided by the University of California, San Diego.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023
blank

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Problematic Internet Use in Young Chinese Teens

Global Cyclospora Infection in HIV/AIDS Patients Reviewed

Metals Linked to Beach Plastic Litter in South Africa

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.