• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Stem Cells Created in Living Mice

Bioengineer by Bioengineer
September 19, 2013
in Bioengineering
Reading Time: 1 min read
0
A technique has been developed allowing researchers to reprogram cells in living mice without removing those cells from their natural environment. Image: Maria Abad & Lluc Mosteiro/CNIO

A technique has been developed allowing researchers to reprogram cells in living mice without removing those cells from their natural environment. Image: Maria Abad & Lluc Mosteiro/CNIO

Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have reprogrammed adult mouse cells to behave like embryonic stem cells, without the need for a stay in a Petri dish.

The technique, published today in Nature, allows researchers to reprogram cells in living mice without removing those cells from their natural environment. Initial tests suggest that these cells are able to take on a wider variety of identities than those generated by earlier methods.

The finding has the potential to accelerate efforts to develop regenerative therapies by avoiding the need to grow cells outside the body and then grafting them back in place, says George Daley, a stem-cell researcher at Boston Children’s Hospital in Massachusetts, who was not involved with the study.

“This work is really at the leading edge of an advancing wave of in vivo reprogramming,” he says. “We’ve been facing big challenges recreating the physiological milieu in Petri dishes and then getting those cells to functionally integrate into the body.”

Those challenges have led some to develop methods to directly convert one cell type into another — for example, converting adult pancreatic cells from a type that aids in digestion to a type that secretes insulin — without removing them from the body or reprogramming them back to an embryonic state. But some researchers, including Daley, say that such reprogramming may be the only way to create cells that can fully recapitulate specialized adult cell type.

Story Source:

The above story is based on materials provided by Nature magazine, Heidi Ledford.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel V2O5/ZnO Nanocomposite Electrodes for Energy Storage

Evaluating Energy Digestibility in Quail Feed Ingredients

Salvia Spinosa’s Antimicrobial Effect on Enterococcus faecalis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.