• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Stay focused: Algae-inspired polymers light the way for enhanced night vision

Bioengineer by Bioengineer
October 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba synthesize an elastic polymer from low-cost, sustainable materials, that can be used it to fabricate lenses that help keep infrared cameras focused in the dark

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – In a study recently published in ACS Applied Polymer Materials, researchers from the University of Tsukaba synthesized an infrared-transmitting polymer–based on low-cost, widely available materials–that retains its shape after stretching. The properties of this polymer are highly applicable to the preparation of cheaper night-vision lenses that retain focus while imaging at variable distances.

Cameras that function in the dark are common in many fields, including the military, security, firefighting, and wildlife tracking. However, infrared night-vision lenses are typically expensive, and the camera images tend to appear flat. Consequently, there is a need for lenses based on commonly available, cheap materials that are useful for more realistic vision in three dimensions.

The researchers’ polymer is based on sulfur and compounds derived from algae and plants. The polymer is easy to prepare using a chemical process called inverse vulcanization: simply mix the constituent compounds together and stir while heating. As a first step, the researchers designed a polymer that is elastic–that is, reverts to its original shape–after being repeatedly restretched by 20%.

“Inverse vulcanization is an ideal synthetic approach for our polymers,” explains lead author Professor Junpei Kuwabara. “Squalene and other long unsaturated hydrocarbons help optimize the cross-linking structure and give the polymers a desirable elasticity.”

Next, the researchers needed to determine whether lenses constructed from their polymers are at least partially transparent to infrared light, for nighttime imaging. Lens construction was easy: simply pour the polymer into a lens-shaped silicone mold and heat for a few hours. Even a 3.3-millimeter-thick lens transmitted 10% of incoming infrared light.

“The lenses have two wavelength ranges that are infrared-transparent,” says senior author Professor Takaki Kanbara. “No lens is completely transparent; 10% transmission is an excellent value for these materials.”

Furthermore, the researchers confirmed that the polymer has variable-focus properties. By projecting an image through the lens, and monitoring the resulting image that came through while elongating the lens, much of the transmitted image remained in focus.

“The lens retained 54% of the focus variation, which is sufficient for practical uses,” explains Dr. Takashi Fukuda, senior researcher, National Institute of Advanced Industrial Science and Technology (AIST). “The lens also retained its full initial focus after contracting back to its original shape.”

The fabrication of conventional infrared night-vision lenses, in a way that allows users to easily change focus from one position to another, is typically difficult. Without a variable-focus capability, details that are pertinent to criminal or research investigations, for example, may be lost. The researchers of this study are overcoming current lens design limitations by using cheap, sustainable materials, and fabrication procecures that any researcher can carry out in their laboratory. Development of new materials in this area may benefit a range of sectors including emergency personnel and environmental researchers

###

The article, “Algae-inspired, sulfur-based polymer with infrared transmission and elastic function,” was published in ACS Applied Polymer Materials at DOI: 10.1021/acsapm.0c00924.

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acsapm.0c00924

Tags: Chemistry/Physics/Materials SciencesMaterialsOpticsPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025
Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025

PKU Scientists Reveal Climate Effects and Future Patterns of Hailstorms in China

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.