• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Speeding up the journey towards clean energy through photocatalyst optimization

Bioengineer by Bioengineer
June 18, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University link the activity of water splitting catalysts to easy-to-measure parameters to enable rapid screening of clean energy generating materials

IMAGE

Credit: Osaka University

Osaka, Japan – Photocatalysts that harness light energy and use it to split water into hydrogen and oxygen attract significant scholarly attention, owing to the appeal of hydrogen as a potential clean energy source. However, the optimization of photocatalyst candidate materials usually requires a considerable time investment. Now, researchers at Osaka University have demonstrated a link between easy-to-measure quantities and catalyst performance that could provide a rapid evaluation method.

The conversion of light energy to chemical energy using photocatalysts has been widely reported; however, the continual optimization of photocatalytic materials is critical for their successful application. The properties of photocatalysts, including their surface area, crystallinity, and various electronic features, affect their activity. These properties can be influenced by the techniques and specific conditions used to prepare them, thus leading to a broad range of materials that could be evaluated.

Experiment setup and test of every generated material is a time-consuming step in the development process that has yet to be accelerated–until now. In a report published in ACS Energy Letters, Osaka researchers have shown the relationship between time-resolved microwave conductivity (TRMC) measurements and the photocatalytic performance of semiconductor materials. TRMC is a facile process that allows photocatalysts to be evaluated in powder form, which leads to significantly higher throughput.

“We have been able to show that the oxygen evolution rate of a photocatalyst–which is a measure of activity–can be determined from the photoconductivity and the half-lifetime determined by TRMC,” explains study lead author Hajime Suzuki. “Applying this relationship to materials makes evaluating their potential much more efficient.”

The researchers used their findings to determine the optimum processing temperature for a material that had not been extensively studied, PbBiO2Cl, and were able to produce an analogue that had an apparent quantum efficiency of 3%–3 times higher than had been achieved in previous studies using higher processing temperatures.

“We hope that the principles of our findings can be widely applied to improve the efficiency and ease of screening materials, finding candidates, and choosing synthesis conditions,” study corresponding author Akinori Saeki explains. “In terms of the broader picture, high throughput processes could accelerate the development of cleaner energy solutions.”

###

The article, “Photoconductivity?Lifetime Product Correlates Well with the Photocatalytic Activity of Oxyhalides Bi4TaO8Cl and PbBiO2Cl: An Approach to Boost Their O2 Evolution Rates” was published in ACS Energy Letters at DOI: 10.1021/acsenergylett.9b00793.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Original Source

https://pubs.acs.org/doi/10.1021/acsenergylett.9b00793

Related Journal Article

http://dx.doi.org/10.1021/acsenergylett.9b00793

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterialsSuperconductors/Semiconductors
Share12Tweet7Share2ShareShareShare1

Related Posts

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025
Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025

Lab-Grown Slow-Twitch Muscles Achieved Through Soft Gel Innovation

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Hesperidin Extraction from Kerman Citrus Peels

Silvopastoral Systems in Latin America: Adoption Challenges and Solutions

Understanding Financial Strain in Multimorbid Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.