• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Soft tissue makes coral tougher in the face of climate change

Bioengineer by Bioengineer
April 23, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Raphael Ritson-Williams

Climate change and ocean warming threaten coral reefs and disrupt the harmonious relationship between corals and their symbiotic algae, a process known as “coral bleaching.” However, a new study conducted by scientists at the University of Hawai’i (UH) at Mānoa and the California Academy of Sciences revealed soft tissues that cover the rocky coral skeleton promote the recovery of corals following a bleaching event.

These soft tissues, which are home to beneficial algae, represent a source of energy for corals. The study, led by Chris Wall, a graduate student at the Hawai’i Institute of Marine Biology (HIMB) in the UH Mānoa School of Ocean and Earth Science and Technology (SOEST), showed corals with thicker tissue may be better equipped to survive bleaching in a warming ocean.

Coral reefs are a vital resource to the people of Hawai’i and the state’s economy in the form of tourism, diving, and recreational fisheries, in addition to protecting shorelines from storms and coastal erosion.

When corals are stressed, they lose the colorful algae living in their tissues, resulting in bleaching and sometimes death of the corals. These events have been historically rare in the Hawaiian Islands, but heat stress is becoming more widespread as a result of climate change. Repeated bleaching events in 2014 and 2015 show that Hawai’i is not immune to the effects of ocean warming.

“While we know a great deal about thermal stress and its effects on corals, we know comparatively little about how corals recover from bleaching in the real world, or how local factors, such as light or nutrients in seawater, can influence recovery from bleaching,” said Wall.

In the fall of 2014, Wall and colleagues studied colonies of two species of corals, rice coral and finger coral, in Kāne’ohe Bay, O’ahu, Hawai’i, when seawater in the bay reached unusually high temperatures of 86F, which is near the maximum temperature Hawaiian corals can tolerate. The team was interested in how colonies that were sensitive to thermal stress responded to and recovered from bleaching compared to adjacent coral colonies that remained pigmented and did not bleach.

During the warming event and three months later, the team assessed the coral animals and their symbiotic algae, and throughout the study measured environmental factors including light levels, water temperatures, sedimentation rates, and seawater nutrients to better understand how environmental factors influenced the severity of coral bleaching and rates of recovery. The researchers also used naturally-occurring chemical signatures in coral tissues to test how corals were performing and what they were eating during and after stress.

“A coral’s diet is based on food from their symbionts and the consumption of small organisms in seawater known as plankton, and these two sources supply the building blocks for coral tissues. But under bleaching, corals are left without their symbionts and are in effect starving. We wanted to know how corals overcome this nutritional dilemma–were they relying on stored energy in their tissues (much like a bear in hibernation) or were they eating more plankton?”

The bleached colonies did not die and showed remarkable resilience, recovering from losses in both their symbionts and soft tissues within three months. This recovery was hastened by environmental factors, such as cooler water temperatures and water with low nutrient concentrations, which influenced coral tissues.

The researchers determined that coral tissues are very important in the bleaching recovery process and corals with abundant or thick tissues may be able to better survive and recover from bleaching stress. The stored energy in coral tissues, and not greater plankton feeding, served as food for corals during thermal stress and helped corals recover.

“Kāne’ohe Bay is a unique coral ecosystem that has rebounded from decades of human impacts. Therefore, corals in Kāne’ohe Bay may hold valuable lessons for science as we work to understand the basis for coral tolerance to the environmental challenges experienced today and those to come in the future as humans continue to change our global climate,” said Wall.

In the future, the researchers will work to better understand what mechanisms underpin the coral animals’ and their microbes’ tolerance and vulnerability to ocean warming.

###

Media Contact
Marcie Grabowski
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/lno.11166

Tags: BacteriologyBiodiversityBiologyClimate ChangeDevelopmental/Reproductive BiologyEcology/EnvironmentMarine/Freshwater BiologyOceanographyPopulation Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Targeting MCL1: New Therapies for Lethal Prostate Cancer

October 8, 2025

Analyzing Methadone Levels in Post-Mortem Cases

October 8, 2025

New Vaccine Demonstrates Potential Against Typhoid and Invasive Salmonella in Initial Human Trial

October 8, 2025

AI Chatbot Enhances Nursing Education: Egypt vs. Saudi Arabia

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1054 shares
    Share 421 Tweet 263
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Targeting MCL1: New Therapies for Lethal Prostate Cancer

Analyzing Methadone Levels in Post-Mortem Cases

New Vaccine Demonstrates Potential Against Typhoid and Invasive Salmonella in Initial Human Trial

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.