• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Skoltech scientists developed a novel method to fine-tune the properties of carbon nanotubes

Bioengineer by Bioengineer
July 24, 2019
in Science
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the Skoltech Center for Photonics and Quantum Materials (CPQM) have developed a novel method to fine-tune the optoelectrical properties of single-walled carbon nanotubes (SWCNT) by applying an aerosolized dopant solution on their surface, thus opening up new avenues for SWCNT application in optoelectronics. The results of their study were published in The Journal of Physical Chemistry Letters.

This year has witnessed the appearance on the market of foldable and bendable screens, bolstering the development of unique materials and paving the way for the next generation of products of virtually any shapes and sizes. Transparent conductive films (TCF) made using an advanced solution, SWCNT, are seen as the key element of flexible and transparent electronics. As opposed to the customary n-type transparent rigid conductors, such as tin-doped indium oxide or aluminum-doped zinc oxide, the flexible and stretchable SWCNT films have p-type (hole-type) conductivity. However poor control over SWCNT’s electronic properties is the main hindrance for their broad industrial use. This is particularly true for optoelectronic applications, which often require efficient control over conductivity and Fermi levels, amongst other things.

Carbon nanotubes are commonly treated with a doping agent.

“SWCNT conductivity is enhanced using one of the three most common doping methods: drop-casting, spin-coating or dip-coating, which can significantly decrease the resistance of pristine SWCNT films (up to 15 times) but fail to ensure spatial uniformity and have poor scalability. This leads to non-uniform evaporation of the liquid solvent, resulting in a coffee-ring effect. Moreover, none of these techniques enable precise control over the Fermi level in the SWCNT films,” explains Skoltech PhD student, Alexey Tsapenko.

Scientists from the Skoltech lab directed by Professor Albert Nasibulin developed a new approach ensuring uniform, controllable and easily reproducible aerosol doping of SWCNT. The performances obtained with the new method break new ground, prompting the replacement of the currently prevalent rigid transparent metal-oxide conductors by flexible and transparent electronics, and the creation of new applications based on highly conductive transparent films.

“Our method allows easy tuning of SWCNT film parameters thanks to time-controlled deposition of doping aerosol particles,” adds Alexey.

The researchers involved in the project note that the new fine-tuning approach developed specifically for carbon nanotubes can be applied for electronic structures of other low-dimensional materials.

###

Media Contact
Alina Chernova
[email protected]

Related Journal Article

https://www.skoltech.ru/en/2019/07/skoltech-scientists-developed-a-novel-method-to-fine-tune-the-properties-of-carbon-nanotubes/
http://dx.doi.org/10.1021/acs.jpclett.9b01498

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Senem SEZER won the Altın Kalem Master’s Thesis Award

March 22, 2022

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    57 shares
    Share 23 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Chi-Huey Wong awarded Tetrahedron Prize for Creativity in Organic Synthesis

    38 shares
    Share 15 Tweet 10
  • Dogs lying in the middle of the road after sunrise at Kewa Pueblo, in no hurry to start the day

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesUniversity of WashingtonUrogenital SystemVirologyVehiclesWeather/StormsWeaponryViolence/CriminalsVirusVaccineZoology/Veterinary ScienceUrbanization

Recent Posts

  • Early blood tests predict death, severe disability for traumatic brain injury
  • Obscure gastrointestinal bleeding: rebleeding rates and rebleeding predictors found
  • Collaborations inspired early-career NIH grant that could lead to treatment breakthroughs for a range of medical conditions
  • Novel hypotheses that answer key questions about the evolution of sexual reproduction
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In