• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, March 6, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Single brain region links depression and anxiety, heart disease, and treatment sensitivity

Bioengineer by Bioengineer
October 26, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

The researchers used brain imaging to explore other brain regions affected by sgACC over-activity during threat. Over-activation of sgACC increased activity within the amygdala and hypothalamus, two key parts of…
view more 

  • Over-activity in a single brain region underlies multiple symptoms of stress-related disorders
  • Targeting this region with ketamine only treats some of the symptoms
  • The region disrupts different brain networks: one involved in threat responses and one involved in responses to rewards
  • Distinct brain networks may explain the differential sensitivity of symptoms to treatments

Over-activity in a single brain region called the subgenual anterior cingulate cortex (sgACC) underlies several key symptoms of mood and anxiety disorders, but an antidepressant only successfully treats some of the symptoms. A new study, published today in the journal Nature Communications, suggests that sgACC is a crucial region in depression and anxiety, and targeted treatment based on a patient’s symptoms could lead to better outcomes.

Depression is a debilitating disorder affecting hundreds of millions of people worldwide, but people experience it differently. Some mainly have symptoms of elevated negative emotion like guilt and anxiety; some have a loss of ability to experience pleasure (called anhedonia); and others a mix of the two.

Research at the University of Cambridge has found that increased activity in sgACC – a key part of the emotional brain- could underlie increased negative emotion, reduced pleasure and a higher risk of heart disease in depressed and anxious people. More revealing still is the discovery that these symptoms differ in their sensitivity to treatment with an antidepressant, despite being caused by the same change in brain activity.

Using marmosets, a type of non-human primate, the team of researchers infused tiny concentrations of an excitatory drug into sgACC to over-activate it. Marmosets are used because their brains share important similarities with those of humans and it is possible to manipulate brain regions to understand causal effects.

The researchers found that sgACC over-activity increases heart rate, elevates cortisol levels and exaggerates animals’ responsiveness to threat, mirroring the stress-related symptoms of depression and anxiety.

“We found that over-activity in sgACC promotes the body’s ‘fight-or-flight’ rather than ‘rest-and-digest’ response, by activating the cardiovascular system and elevating threat responses,” said Dr Laith Alexander, one of the study’s first authors from the University of Cambridge’s Department of Physiology, Development and Neuroscience.

“This builds on our earlier work showing that over-activity also reduces anticipation and motivation for rewards, mirroring the loss of ability to experience pleasure seen in depression.”

To explore threat and anxiety processing, the researchers trained marmosets to associate a tone with the presence of a rubber snake, an imminent threat which marmosets find innately stressful. Once marmosets learnt this, the researchers ‘extinguished’ the association by presenting the tone without the snake. They wanted to measure how quickly the marmosets could dampen down and ‘regulate’ their fear response.

“By over-activating sgACC, marmosets stayed fearful for longer as measured by both their behaviour and blood pressure, showing that in stressful situations their emotion regulation was disrupted,” said Alexander.

Similarly, when the marmosets were confronted with a more uncertain threat in the form of an unfamiliar human, they appeared more anxious following over-activation of sgACC.

“The marmosets were much more wary of an unfamiliar person following over-activation of this key brain region – keeping their distance and displaying vigilance behaviours,” said Dr Christian Wood, one of the lead authors of the study and senior postdoctoral scientist in Cambridge’s Department of Physiology, Development and Neuroscience.

The researchers used brain imaging to explore other brain regions affected by sgACC over-activity during threat. Over-activation of sgACC increased activity within the amygdala and hypothalamus, two key parts of the brain’s stress network. By contrast, it reduced activity in parts of the lateral prefrontal cortex – a region important in regulating emotional responses and shown to be underactive in depression.

“The brain regions we identified as being affected during threat processing differed from those we’ve previously shown are affected during reward processing,” said Professor Angela Roberts in the University of Cambridge’s Department of Physiology, Development and Neuroscience, who led the study.

“This is key, because the distinct brain networks might explain the differential sensitivity of threat-related and reward-related symptoms to treatment.”

The researchers have previously shown that ketamine – which has rapidly acting antidepressant properties – can ameliorate anhedonia-like symptoms. But they found that it could not improve the elevated anxiety-like responses the marmosets displayed towards the human intruder following sgACC over-activation.

“We have definitive evidence for the differential sensitivity of different symptom clusters to treatment – on the one hand, anhedonia-like behaviour was reversed by ketamine; on the other, anxiety-like behaviours were not,” Professor Roberts explained.

“Our research shows that the sgACC may sit at the head and the heart of the matter when it comes to symptoms and treatment of depression and anxiety.”

###

Media Contact
Jacqueline Garget
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-19167-0

Tags: BehaviorCardiologyDepression/AngerMedicine/HealthMental HealthneurobiologyNeurochemistryStress/Anxiety
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Study reveals how egg cells get so big

March 5, 2021
IMAGE

Survey identifies factors in reducing clinical research coordinator turnover

March 5, 2021

New ‘split-drive’ system puts scientists in the (gene) driver seat

March 5, 2021

Online dating: Super effective, or just… superficial?

March 5, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    668 shares
    Share 267 Tweet 167
  • People living with HIV face premature heart disease and barriers to care

    84 shares
    Share 34 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    39 shares
    Share 16 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangecancerMaterialsCell BiologyChemistry/Physics/Materials SciencesBiologyTechnology/Engineering/Computer ScienceInfectious/Emerging DiseasesPublic HealthEcology/EnvironmentMedicine/HealthGenetics

Recent Posts

  • “Magic sand” might help us understand the physics of granular matter
  • Study reveals how egg cells get so big
  • Survey identifies factors in reducing clinical research coordinator turnover
  • New ‘split-drive’ system puts scientists in the (gene) driver seat
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In