• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Single atom-thin platinum makes a great chemical sensor

Bioengineer by Bioengineer
September 14, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JO Yxell/Chalmers University of Technology

Researchers at Chalmers University of Technology, Sweden, together with colleagues from other universities, have discovered the possibility to prepare one-atom thin platinum for use as a chemical sensor. The results were recently published in the scientific journal Advanced Material Interfaces.

“In a nutshell, we managed to make a metal layer just one-atom thick – sort of a new material. We found that this atomically-thin metal is super sensitive to its chemical environment. Its electrical resistance changes significantly when it interacts with gases,”, explains Kyung Ho Kim, postdoc at the Quantum Device Physics Laboratory at the Department of Microtechnology and Nanoscience at Chalmers, and lead author of the article.

The essence of the research is the development of 2D materials beyond graphene.

“Atomically thin platinum could be useful for ultra-sensitive and fast electrical detection of chemicals. We have studied the case of platinum in great detail, but other metals like palladium produce similar results”, says Samuel Lara Avila, Associate Professor at the Quantum Device Physics Laboratory and one of the authors of the article.

The researchers used the sensitive chemical-to-electrical transduction capability of atomically thin platinum to detect toxic gases at the parts-per-billion level. They demonstrated this with detection of benzene, a compound that is carcinogenic even at very small concentrations, and for which no low-cost detection apparatus exists.

“This new approach, using atomically thin metals, is very promising for future air-quality monitoring applications”, says Jens Eriksson, Head of the Applied sensor science unit at Linköping University and a co-author of the paper.

###

This study was first made available online in April 2020 ahead of final publication in issue on June 23, 2020.

The study was a collaboration between scientists from Chalmers University of Technology, Linköping University, Uppsala University, the University of Zaragoza in Spain, and the MAX IV Laboratory in Lund., Kyung Ho Kim, Hans He and Sergey Kubatkin from Chalmers contributed to the research together with Samuel Lara-Avila.

The work was jointly supported by the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation, The Swedish Research Council and the Chalmers Excellence Initiative for Nano. The experiments were performed in part at the Nanofabrication Laboratory at Chalmers.

Read the article in Advanced Material Interfaces:

Chemical Sensing with Atomically Thin Platinum Templated by a 2D Insulator

https://onlinelibrary.wiley.com/doi/full/10.1002/admi.201902104

For more information, contact:

Samuel Lara Avila, Associate Professor, Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience – MC2,

Chalmers University of Technology

[email protected]

More information about the research:

Boosting the sensitivity of solid?state gas sensors by incorporating nanostructured materials as the active sensing element can be complicated by effects on the interfaces. Interfaces at nanoparticles, grains, or contacts may result in nonlinear current-voltage response, high electrical resistance, and ultimately, electric noise that limits the sensor read?out.

This work reports the possibility to prepare electrically continuous platinum layers on one atom thickness, by physical vapour deposition on the carbon zero layer (also known as the buffer layer) grown epitaxially on silicon carbide. With a 3-4 Å thin Pt layer, the electrical conductivity of the metal is strongly modulated when interacting with chemical analytes, due to charges being transferred to/from Pt. The strong interaction with chemical species, together with the scalability of the material, enables the fabrication of chemiresistor devices for electrical read-out of chemical species with sub part-per-billion (ppb) detection limits. The 2D system formed by atomically thin Pt on the carbon zero layer on SiC opens up a route for resilient and high sensitivity chemical detection and can be the path for designing new heterogenous catalysts with superior activity and selectivity.

Media Contact
Joshua Worth
[email protected]

Original Source

https://www.chalmers.se/en/departments/mc2/news/Pages/One-atom-thin-platinum-makes-a-great-chemical-sensor.aspx

Related Journal Article

http://dx.doi.org/10.1002/admi.201902104

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025
Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025

Innovative Method Paves the Way for Unhindered Light Guidance

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Adolescent Hyperandrogenism: Diagnosing and Treating Challenges

Drivers of Human-Gaur Conflict in Tamil Nadu

Enhanced Water Splitting with Cu-Decorated TiO2 Catalysts

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.