• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Setting gold and platinum standards where few have gone before

Bioengineer by Bioengineer
June 25, 2021
in Chemistry
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Extreme pressure at Sandia and Lawrence Livermore national labs

IMAGE

Credit: Photo by Leo Molina

ALBUQUERQUE, N.M. — Like two superheroes finally joining forces, Sandia National Laboratories’ Z machine — generator of the world’s most powerful electrical pulses — and Lawrence Livermore National Laboratory’s National Ignition Facility — the planet’s most energetic laser source — in a series of 10 experiments have detailed the responses of gold and platinum at pressures so extreme that their atomic structures momentarily distorted like images in a fun-house mirror.

Similar high-pressure changes induced in other settings have produced oddities like hydrogen appearing as a metallic fluid, helium in the form of rain and sodium a transparent metal. But until now there has been no way to accurately calibrate these pressures and responses, the first step to controlling them.

Said Sandia manager Chris Seagle, an author of a technical paper recently published by the journal Science, “Our experiments are designed to measure these distortions in gold and platinum as a function of time. Compression gives us a measurement of pressure versus density.”

Following experiments on the two big machines, researchers developed tables of gold and platinum responses to extreme pressure. “These will provide a standard to help future researchers calibrate the responses of other metals under similar stress,” said Jean-Paul Davis, another paper author and Sandia’s lead scientist in the effort to reliably categorize extreme data.

Data generated by experiments at these pressures — roughly 1.2 terapascals (a terapascal is 1 trillion pascals), an amount of pressure relevant to nuclear explosions — can aid understanding the composition of exoplanets, the effects and results of planetary impacts, and how the moon formed.

The technical unit called the pascal is so small it is often seen in its multiples of thousands, millions, billions or trillions. It may be easier to visualize the scale of these effects in terms of atmospheric pressure units. The center of the Earth is approximately 3.6 million times the atmospheric pressure at sea level, or 3.6 million atmospheres. Z’s data reached 4 million atmospheres, or four million times atmospheric pressure at sea level, while the National Ignition Facility reached 12 million atmospheres.

The force of the diamond anvil

Remarkably, such pressures can be generated in the laboratory by a simple compression device called a diamond anvil.

However, “We have no standards for these extreme pressure ranges,” said Davis. “While investigators see interesting events, they are hampered in comparing them with each other because what one researcher presents at 1.1 terapascals is only 0.9 on another researcher’s scale.”

What’s needed is an underlying calibration tool, such as the numerical table these experiments helped to create, he said, so that scientists are talking about results achieved at the same documented amounts of pressure.

“The Z-NIF experiments will provide this,” Davis said.

The overall experiments, under the direction of Lawrence Livermore researcher D. E. Fratanduono, relied on Z machine’s accuracy as a check on NIF’s power.

Z’s accuracy, NIF’s power

Z’s force is created by its powerful shockless magnetic field, generated for hundreds of nanoseconds by its 20 million-ampere pulse. For comparison, a 120-watt bulb uses one ampere.

The accuracy of this method refocused the higher pressures achieved using NIF methods.

NIF’s pressures exceeded those at the core of the planet Saturn, which is 850 gigapascals. But its laser-compression experiments sometimes required a small shock at the start of the compression wave, raising the material’s temperature, which can distort measurements intended to set a standard.

“The point of shockless compression is to keep the temperature relatively low for the materials being studied,” said Seagle. “Basically the material does heat as it compresses, but it should remain relatively cool — hundreds of degrees — even at terapascal pressures. Initial heating is a troublesome start.”

Another reason that Z, which contributed half the number of “shots,” or firings, and about one-third the data, was considered the standard for results up to 400 gigapascals was because Z’s sample size was roughly 10 times as big: 600 to 1,600 microns thick compared with 60 to 90 microns on NIF. A micron is a thousandth of a millimeter.

Larger samples, slower pulses equal easier measurements

“Because they were larger, Z’s samples were less sensitive to the microstructure of the material than were NIF’s,” said Davis. “Larger samples and slower pulses are simply easier to measure to high relative precision. Combining the two facilities really tightly constrained the standards.”

Combining Z and NIF data meant that the higher-accuracy, but lower-intensity Z data could be used to pin down the low-to-medium pressure response, and with mathematical adjustments, reduce error on the higher-pressure NIF data.

“The purpose of this study was to produce highly accurate pressure models to approximately one terapascal. We did that, so this combination of facilities has been advantageous,” said Seagle.

###

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Sandia news media contact: Neal Singer, [email protected], 505-977-7255

Media Contact
Neal Singer
[email protected]

Tags: AstronomyAstrophysicsElectromagneticsPlanets/MoonsSoftware EngineeringSpace/Planetary ScienceStars/The SunWeaponry
Share13Tweet8Share2ShareShareShare2

Related Posts

Fig. 1. Four types of aircraft exhaust particles and their typical number fractions at engine exit and 15 m downstream.

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

May 14, 2025
Artistic representation of CO2 capture from a moisture-laden gas stream using CALF-20, a zinc-based metal-organic framework.

Decoding Carbon Capture: How Nature and Technology Trap Carbon

May 13, 2025

Carbon Dioxide Enables Controlled Anionic Polymerization

May 13, 2025

Groundbreaking Study Maps Biochar’s Global Role in ESG and Climate Solutions

May 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    73 shares
    Share 29 Tweet 18
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Onion-Like Nanoparticles Discovered in Aircraft Exhaust Emissions

SUMO2/3 Regulates Cell Survival Under Oxygen-Glucose Stress

Pulmonary Vasodilator Use in Preterm US Infants

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.