• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Self-compacting concrete becomes more sustainable thanks to using granite residue

Bioengineer by Bioengineer
June 25, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Córdoba

The basis of the construction industry clashes head-on with environmental sustainability. Extracting raw materials and turning them into building materials has high energetic costs. Granite production, totaling 614,000 tons in Spain in 2013, leaves behind it a series of residues that are difficult to manage. This is the case of granite sludge, the material that results from the mixture of dust particles given off during the cutting process and the water used to cool the blade. When granite sludge is dumped at a landfill and the water evaporates, the silicon dust ends up going into the atmosphere and can be inhaled, with negative health consequences. It can also interfere with normal soil mechanics.

Aiming to properly manage these residues and in doing so prevent health and environmental problems, three University of Cordoba research groups have joined forces to analyze the feasibility of using granite sludge to substitute conventional aggregates in self-compacting mortar.

In this vein, “it is possible to substitute up to 40% of conventional aggregates for granite sludge while still maintaining the mortar’s qualities of durability, strength and compaction” according to the lead researcher working on the study, Angélica Lozano, from the the Construction Engineering group at UCO. Thus, granite sludge becomes a sustainable alternative to using conventional aggregates.

Working in synergy with each other are the groups of “Construction Engineering”, “Materials and Applications” and “Plasma Physics: Characterization, Models and Applications”, led by Professors José Ramón Jiménez, José María Fernández and Antonio Rodero respectively. Two aims are accomplished: managing a residue that is bad for our health, and the environmental sustainability of self-compacting concrete, currently one of the most sought-after materials in the building industry since it can be compacted without having to apply compaction energy. Despite the advantages of this new material, the need for a high percentage of aggregates to be extracted is not environmentally sustainable. However, using granite sludge will greatly help solve the problem of this lack of sustainability.

###

Lozano-Lunar, A., Dubchenko, I., Bashynskyi, S., Rodero A., Fernández J.M., Jiménez, J.R. (2020 Performance of self-compacting mortars with granite sludge as aggregate. Construction and Building Materials. Volume 251, 118998, ISSN 0950-0618 https://doi.org/10.1016/j.conbuildmat.2020.118998

Media Contact
Elena Lázaro
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.conbuildmat.2020.118998

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025
blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammatory Markers Shape EGFR-Mutant Lung Cancer

Radiomic Changes in Femur During Helical Tomotherapy

Building Larger Hydrocarbons for Optical Cycling

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.