• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, January 20, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sea star’s ability to clone itself may empower this mystery globetrotter

Bioengineer by Bioengineer
October 13, 2020
in Health
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Michael Boyle

For decades, biologists have captured tiny sea star larvae in their nets that did not match the adults of any known species. A Smithsonian team recently discovered what these larvae grow up to be and how a special superpower may help them move around the world. Their results are published online in the Biological Bulletin.

“Thirty years ago, people noticed that these asteroid starfish larvae could clone themselves, and they wondered what the adult form was,” said staff scientist Rachel Collin at the Smithsonian Tropical Research Institute (STRI). “They assumed that because the larvae were in the Caribbean the adults must also be from the Caribbean.”

Scientists monitor larvae because the larvae can be more sensitive to physical conditions than the adults and larval dispersal has a large influence on the distribution of adult fishes and invertebrates. Collin’s team uses a technique called DNA barcoding to identify plankton. They determine the DNA sequence of an organism, then look for matches with a sequence from a known animal in a database.

“This mystery species was one of the most common in our samples from the Caribbean coast of Panama,” Collin said. “We knew from people’s studies that the DNA matched sequences from similar larvae across the Caribbean and it matched unidentified juvenile starfish caught in the Gulf of Mexico–but no one had found a match to any known adult organism in the Caribbean. So we decided to see if the DNA matched anything in the global ‘Barcode of Life’ data base.”

“That’s when we got a match with Valvaster striatus, a starfish that was thought to be found only in the Indo West Pacific,” Collin said. “The is the first-ever report of this species in the Atlantic Ocean. We could not have identifed it if Gustav Paulay from the University of Florida didn’t have DNA sequences from invertebrates on the other side of the world.”

But why are the larvae common in the Caribbean if adult Valvaster starfish have never been found here? Are the adult starfish hidden inside Caribbean reefs, or are the larvae arriving from the other side of the world?

V. striatus is widespread but rare in the western Pacific. The few reports from collectors and the confirmed photos on iNaturalist range from the Indian Ocean to Guam and Hawaii. These starfish live deep in the reef matrix, only coming out at night. So, it is possible that there are adults in the Caribbean that have never been seen. But the other possibility, that the ability to clone themselves may allow them to spread around the world, is also intriguing.

“It’s possible that the ability of the larvae to clone themselves is not just a clever way to stay forever young,” Collin said. “There’s a natural barrier that keeps organisms from the western Pacific and the Indian ocean from crossing the Atlantic to the Caribbean. After they make it around the tip of Africa, they are met by a cold current that presumably kills tropical species.”

“Just how cloning could help them get through the barrier is still not known, but it’s intriguing that another sea star species from the Indo West Pacific that was collected for the first time in the Caribbean in the 1980s also has cloning larvae,” Collin said.

###

This study would not have been possible without collecting permits from Panama’s MiAmbiente and ARAP, molecular analysis in the Laboratories of Analytical Biology at the Smithsonian’s National Museum of Natural History in Washington, D.C. and funds from the Smithsonian, Paul Peck, an anonymous donor, the Gordon and Betty Moore Foundation and the Sloan Foundation.

Collin, R., Venera-Pontón, D.E., Paulay, G., Boyle, M.J. 2020. World travelers: DNA Barcoding unmasks the origin of cloning Asteroid larvae from the Caribbean. Bio Bull. Doi:10.1086/710796

Media Contact
Elisabeth king
[email protected]

Original Source

https://www.journals.uchicago.edu/doi/abs/10.1086/710796

Related Journal Article

http://dx.doi.org/10.1086/710796

Tags: BiodiversityBiologyDevelopmental/Reproductive BiologyEcology/EnvironmentEvolutionMarine/Freshwater BiologyOceanographyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Genome editing to treat human retinal degeneration

January 19, 2021
IMAGE

Individual and organizational capacity to change can reduce health care workforce burnout

January 19, 2021

Brain cell network supplies neurons with energy

January 19, 2021

Lack of physical exercise during COVID-19 confinement may lead to a rise in mortality

January 19, 2021
Next Post
IMAGE

Wearable IT devices: Dyeing process gives textiles electronic properties

IMAGE

New insight on mole growth could aid development of skin cancer treatments

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • People living with HIV face premature heart disease and barriers to care

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

MaterialsPublic HealthClimate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesMedicine/HealthTechnology/Engineering/Computer ScienceEcology/EnvironmentGeneticscancerCell Biology

Recent Posts

  • Genome editing to treat human retinal degeneration
  • Do simulations represent the real world at the atomic scale?
  • Protected areas vulnerable to growing emphasis on food security
  • Constructing termite turrets without a blueprint
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In