• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 1, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists use crabs to validate popular method to identify unknown human brain neurons

Bioengineer by Bioengineer
December 6, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study by MU scientist and team could contribute to future breakthroughs in understanding the brain and neurological diseases

IMAGE

Credit: University of Missouri


“Being crabby” might have a whole new meaning.

A crab’s nervous system could help scientists learn what causes single neurons in the human brain to become “out of whack,” which can contribute to the development of neurological diseases like Alzheimer’s disease. Knowing exactly how a single neuron operates among the billions housed in the human brain could one day help scientists design innovative ways to prevent and treat these diseases, such as targeted therapies.

The study, conducted by researchers at the University of Missouri, Brandeis University and the University of Texas at Austin, was published in the journal Proceedings of the National Academy of Sciences.

Researchers worked to validate a popular research method called RNA sequencing used to identify unknown neurons in the brain and sort them into various subtypes. Neurons are a basic element of all animal nervous systems, allowing scientists to draw comparisons in animal models like crabs when studying the human nervous system.

“There are billions of neurons in the human brain, yet we still don’t know how many distinct types there are,” said David Schulz, a professor of biological sciences in the College of Arts and Science. “We are finally at a technological point where we can ask the incredibly complex question — what are the brain’s building blocks?”

Schulz believes the answer to that question will drive everything we know about diseases in the brain for the next 50 to 100 years. However, in order to answer that question he said we must first know how neurons are different from one another, and how healthy neurons differ from diseased ones.

Using a crab’s nervous system as a model, the researchers compared and validated the results of previous human RNA sequencing methods. Since crabs have already identifiable subtypes of neurons, the researchers knew what they were looking for, so they were able to work backward from the published results and use the RNA sequencing method to validate those findings.

Schulz said he was both surprised and reassured by what they found.

“If you don’t know what you are looking for in the complex human brain, then early efforts using RNA sequencing are going to need some refinement before we can answer this fundamental question,” Schulz said. “This study is one of those refinements. Until we can understand each component, we can’t expect to take the brain apart and put it back together again in order to figure out how it works.”

###

The study, “Molecular profiling of single neurons of known identity in two ganglia from the crab Cancer borealis,” was published in the Proceedings of the National Academy of Sciences. Eve Marder of Brandeis University was a co-corresponding author. Other authors include Adam Northcutt, Daniel Kick, and Joseph Santin at MU; Adriane Otopalik of Brandeis University; and Hans Hofmann, Rayna Harris and Benjamin Goetz of the University of Texas at Austin.

Funding was provided by National Institutes of Health grants. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Media Contact
Eric Stann
[email protected]
573-882-3346

Original Source

https://news.missouri.edu/2019/think-like-a-crab/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1911413116

Tags: AlzheimerBiochemistryBiologycancerCell BiologyMedicine/HealthMolecular BiologyneurobiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolic Classification of Gliomas Revealed by Multi-Omics

January 1, 2026

Gender Gaps in Macular Thickness and Cognitive Function

January 1, 2026

Enhancing Cancer Treatment with Cureety Techcare Telemonitoring

January 1, 2026

Bioengineered Viruses Enable RNA Editing to Treat Sepsis

December 31, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    105 shares
    Share 42 Tweet 26
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    52 shares
    Share 21 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metabolic Classification of Gliomas Revealed by Multi-Omics

Gender Gaps in Macular Thickness and Cognitive Function

Enhancing Cancer Treatment with Cureety Techcare Telemonitoring

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.