• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Scientists study neutron scattering for researching magnetic materials

Bioengineer by Bioengineer
March 5, 2019
in Science
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright for the picture: Didier Hatz

Physicists from the University of Luxembourg and their research partners have demonstrated for the first time in a comprehensive study how different magnetic materials can be examined using neutron scattering techniques. The scientists have published their insights in “Reviews of Modern Physics,” the renowned science journal of the American Physical Society.

From computers to loudspeakers to electric cars and wind turbines, most electronic devices contain magnetic materials. Understanding why magnetic materials have certain properties is crucial to refining these technologies. “The mesoscopic length scale, which is the regime between a nanometre and a micrometre, determines the properties of many materials. Elements in the microstructure of a material, such as the grain boundaries between crystal grains, have a major influence on the thermal, electric, magnetic and mechanical properties of a metal,” explains Andreas Michels, Associate Professor in Physics and Materials at the University of Luxembourg and one of the main authors of the paper.

Perhaps the most important method for examining processes at this level is neutron scattering. “Using neutron scattering techniques, you can get an inside look at these materials, similar to using an X-ray on other materials,” explains Michels. In order to achieve this result, the scientists first bombard samples of a material with a neutron beam. Magnetic interaction with the sample causes the neutrons to be diverted from their normal course. This scattering is determined through a detector. Using theoretical models, the scientists can then draw conclusions about the microstructure of the materials based on the pattern of the scattered neutrons.

The review paper, which was produced in cooperation with researchers at Technical University of Munich, the University of Notre Dame, the University of Minnesota, the Institut Laue-Langevin and the Helmholtz-Zentrum Geesthacht, focuses on analysis techniques. “For the first time, we undertook a comprehensive study to determine which broad class of materials can be researched using neutron scattering techniques,” says Andreas Michels. “Among other things, we are interested in superconductors, permanent magnets, shape-memory alloys, ferrofluids – almost the whole spectrum of magnetic materials from specific uses to fundamental research in solid-state physics.”

The results of the work can be used by physicists and material researchers to get an overview of the range of applications for neutron scattering technology, but also by engineers to make predictions about load-bearing capacity, wear and tear, and the qualities of materials under changing conditions.

###

Media Contact
Thomas Klein
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/RevModPhys.91.015004

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsEnergy/Fuel (non-petroleum)Industrial Engineering/ChemistryMaterials
Share15Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    54 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Microbial Risk Assessment Through Detection Technology Evolution

Obesity’s Impact on Pancreatic Surgery Outcomes Compared

Virion Movement in Sialoglycan-Cleaving Respiratory Viruses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.