• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 25, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Scientists regenerate skin with stem cells to see how DNA defects in kids cause cancer

Bioengineer by Bioengineer
November 23, 2020
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bioengineered models let researchers try out new treatments on human tissues before testing actual people

IMAGE

Credit: Cincinnati Children’s

CINCINNATI – Physicians and scientists at Cincinnati Children’s Hospital Medical Center used new stem cell technology to regenerate and study living patient-specific skin in the lab, giving them a precise close up view of how inherited DNA defects cause skin damage and deadly squamous cell carcinoma in children and young adults with Fanconi anemia (FA).

Reporting their findings in the journal Cell Stem Cell, the researchers are now using the complex 3D laboratory models of FA patient epidermis – and the enhanced biological detail they provide – to screen for drugs that could slow or stop the disease progression. Study authors explain that new human stem cell-derived tissue models overcome inherent limitations when studying human disease in mice, giving researchers an innovative tool to finally solve what has been a long-standing and dangerous molecular mystery.

“Squamous cell carcinoma is a global health problem, and DNA instability in children with Fanconi anemia makes them extremely susceptible,” said Susanne Wells, PhD, the study’s principal investigator and a cancer biologist at the Cincinnati Children’s Cancer and Blood Diseases Institute. “Unlike the general population, squamous cell carcinomas that arise in the head, neck, anogenital regions, and skin of children and young adults with FA tend to be unusually aggressive and deadly.”

Treatments are available for FA, but Wells explained that they come with side effects because of how the disease works.

“We need effective treatments, but identifying the molecular and cellular consequences of FA gene mutations has been difficult because mouse models don’t fully recapitulate human disease. Fortunately, our bioengineered models of 3D human epidermis are helping us overcome this,” said Wells, who is also director of the Epithelial Carcinogenesis and Stem Cell Program.

A Pathway to DNA Instability

FA is an inherited disorder caused by loss of function mutations in over 20 genes in human reproductive (germline) cells. Usually, the FA pathway plays an important role in normal skin structure and function. And although all cells contain crosslinked DNA, defective DNA repair machinery in people with FA causes the accumulation of defective crosslinks. This makes kids with FA prone to DNA instability, bone marrow failure, and cancer.

Researchers on the current study demonstrate this important role in their most recent data. They conducted a small controlled clinical test to demonstrate that patients with FA mutations are more prone to skin damage and blistering from environmental stress. The test, approved by the Cincinnati Children’s Institutional Review Board, involved applying moderate pressure to the arms of children and young adults with FA and to a control group without FA.

Individuals with FA developed skin blisters much faster when compared to individuals in the non-FA control group, suggesting intrinsic skin fragility in this population.

Mimicking Nature’s Developmental Process

To track the biological development of epidermal vulnerabilities in children with FA, donated skin tissue was used to generate patient-derived pluripotent stem cells (PSCs). The PSCs take on embryonic-like traits and can form any kind of tissue in the body. The patient-specific stem cells in this study harbored FA gene mutations, which for the purpose of direct comparison could be corrected by researchers using an inducible system.

The PSCs were then biochemically converted into epidermal stem and progenitor cells, the developmental stage at which FA mutations usually begin to disrupt skin function. Epidermal stem and progenitor cells were then used to generate complex 3D epidermal models called organotypic skin rafts, which also harbored FA mutations when left uncorrected.

The FA patient-specific tissues had diminished cell-to-cell junctions, key biological connections important to skin formation and function, together with other molecular and structural defects. These defects translated into accelerated blistering of skin after mechanically induced stress, which sets off disease processes that can progress into cancer. Skin fragility in FA might also promote cancer via elevated exposure of the body to carcinogens in the external environment.

According to the study’s first author, Sonya Ruiz-Torres, PhD, a fellow in the Wells laboratory, the researchers are continuing their project. Because the study was limited by a small number of patients, the researchers are generating 3D human organotypic skin rafts to study a broader range of people with FA mutations. This should give scientists a more comprehensive look at different FA gene mutation disease processes, understand how these promote squamous cell carcinoma, and help advance the potential clinical impact of their work.

###

The study manuscript and data can be accessed at this link.

About this study

Funding support for the research came in part from the Environmental Carcinogenesis and Mutagenesis Training Program (T32ES007250-26); the National Cancer Institute (R01CA223790, R01CA228113); a grant from the Fanconi Anemia Research Fund; the National Heart Lung and Blood Institute (R01HL108102); the Center for Clinical and Translational Science and Training Grant (1UL1TR001425-01); and the National Institute of Arthritis and Musculoskeletal and Skin Diseases (F31AR070008).

Media Contact
Barrett J. Brunsman
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.stem.2020.10.012

Tags: BiologycancerCell BiologyDermatologyGenesGeneticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

University of Cincinnati research unveils possible new combo therapy for head and neck cancer

January 22, 2021
IMAGE

CT identifies patients with high-risk nonalcoholic fatty liver disease (NAFLD)

January 22, 2021

New combination of immunotherapies shows great promise for treating lung cancer

January 22, 2021

Catching cancer in the act

January 21, 2021
Next Post
IMAGE

Tarantula toxin attacks with molecular stinger

IMAGE

Growing interest in Moon resources could cause tension, scientists find

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    67 shares
    Share 27 Tweet 17
  • New drug form may help treat osteoporosis, calcium-related disorders

    41 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthTechnology/Engineering/Computer ScienceBiologyChemistry/Physics/Materials SciencesGeneticsClimate ChangeCell BiologyPublic HealthInfectious/Emerging DiseasescancerMaterialsEcology/Environment

Recent Posts

  • UToledo awarded Department of Defense funding to advance promising new chemotherapy
  • Efficient solid-state depolymerization of waste PET
  • Fine tuning first-responder immune cells may reduce TBI damage
  • Regulating the ribosomal RNA production line
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In