• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Scientists pinpoint potential new target for regulating inflammation

Bioengineer by Bioengineer
May 7, 2019
in Cancer
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Andrew Bowie and Michael Carty, Trinity College Dublin

Scientists from Trinity College Dublin have discovered a potential new target for regulating inflammation, which drives a range of diseases including diabetes, cancer and Alzheimer’s. The potential target is an ancient immune protein – SARM – that has been conserved throughout evolution and thus is very similar in humans, other mammals, flies and worms.

The scientists, from Trinity’s School of Biochemistry and Immunology based at the Trinity Biomedical Sciences Institute (TBSI), discovered a previously unknown but important role that SARM plays in the immune response. Their work has been published today in the prestigious journal Immunity.

The innate immune system and SARM

The innate immune system is activated as a protective mechanism in response to cells sensing the presence of strangers such as bacteria and viruses, or of dangers such as tissue injury. This innate immune activation leads to inflammation. However, excessive and/or inappropriate inflammation is implicated in a range of debilitating diseases and so controlling inflammation presents a major problem that scientists are trying to solve.

Specifically, it is inflammasomes – tiny molecular machines – that assemble inside immune cells after sensing infection or injury and initiate the inflammatory response. When assembled, inflammasomes trigger 1) the release of an inflammatory mediator (interleukin-1, or IL-1) and 2) instigate an inflammatory form of cell death (pyroptosis).

Both of these actions can drive inflammation, but what controls the amount of IL-1 produced and the extent of pyroptosis that occurs during inflammation was previously unknown. It turns out that SARM is a key inflammasome regulator.

In their study, the scientists showed that the more SARM that cells contain, the less IL-1 they produce, because SARM interferes with inflammasome assembly. Conversely, more SARM leads to more cell death since SARM causes significant damage to mitochondria, the energy producers of the cell.

The work, which was funded by Science Foundation Ireland, was conducted by scientists in Professor Andrew Bowie’s research group, in particular co-first authors Dr Michael Carty and Dr Jay Kearney. Other TBSI scientists involved include Professors Ed Lavelle and Padraic Fallon.

Dr Michael Carty, lead author of the study, said: ”We’ve been working to try to unlock the secrets of what this ancient protein does for some time, and it was a surprise to find that it could be a key regulator of the inflammasome, which may implicate SARM in inflammatory diseases.”

Professor of Innate Immunology at Trinity, Andrew Bowie, added: “Scientists already knew that SARM drives cell death in the brain, and as a result it is being investigated as a therapeutic target for neurodegeneration and related diseases, but here we found that it is also a key immune regulator in peripheral immune cells. This discovery gives us hope that if we can successfully target SARM we may be able to regulate inflammation, which would provide a new option for treating a plethora of diseases.”

###

Media Contact
Thomas Deane
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.immuni.2019.04.005

Tags: AlzheimercancerCell BiologyImmunology/Allergies/AsthmaMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Black Grape Anthocyanins Boost 5-FU Cancer Therapy

December 29, 2025

Girdin Silencing Boosts Mebendazole’s Ovarian Cancer Fight

December 29, 2025

LC-MS Reveals MFER-Mc Treats Liver Cancer Pathways

December 27, 2025

LncRNA CYTOR’s Role in Triple-Negative Breast Cancer

December 27, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auricular Acupressure Reduces Inflammation in Chronic Back Pain

Metabolomic Insights into Eriocheir sinensis Infection Response

Gaming Disorder Dynamics Linked to Time Perspective

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.