• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists investigated more thoroughly Walker breakdown in 3D magnetic nanowires

Bioengineer by Bioengineer
February 25, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: FEFU press office

Physicists from Russia, Chile, Brazil, Spain, and the UK, have studied how the magnetic properties change in 3D nanowires, promising materials for various magnetic applications, depending on the shape of their cross-section. Particularly, they more deeply probed into the Walker breakdown phenomenon, on the understanding of which the success of the implementation of the future electronics devices depends. The research outcome appears in Scientific Reports.

The cross-sectional geometry of a three-dimensional nanowire affects the domain wall dynamics and therefore is crucial for their control. In turn, managing the DW dynamics under various external conditions is necessary in order to realize the future electronics and computing devices, operating on new physical principles. Such equipment will be faster, more reliable, smaller, and more energy-efficient. An example of it is magnetic memory, generators of magnetic signals, magnetic logic devices.

The domain wall dynamics in magnetic nanowires is curbed by the Walker breakdown phenomenon. That is the loss of the linear dependence of the velocity of domain walls on the magnitude of the external magnetic field when the field exceeds a critical value known as the Walker field.

“We managed to find out that the oscillatory behavior of the DW in a nanowire with a polygonal cross-section comes from energy changes due to deformations of the DW shape during the rotation around the nanowire. Thus, a deeper understanding of the Walker breakdown phenomenon is provided,” says research participant Yuri Ivanov, a docent at the Department of Computer Systems, Far Eastern Federal University School of Natural Sciences. “We have studied 3D nanostructures in which domain walls can oscillate not only along the nanowire but also around it. This double oscillation can be considered as a basis, when designing, for example, the sources of radiofrequency electromagnetic radiation (nano-oscillators) for smartphones of the new generation.”

The production of 3D magnetic nanowires is a fast-growing area of research. The material secures a special position among prospective magnetic nanostructures. The different cross-sectional shapes and curvatures of nanowires determine their dynamic and static magnetic properties. However, it is extremely difficult to study these properties due to the three-dimensional structure of the nano-objects. An additional complication, scientists see in the scaling up of the production of 3D nanowires and its compatibility with existing engineering solutions, for example, in nanoelectronics.

Next, the scientists plan the development of a theoretical model to predict the change in the dynamic magnetic properties in 3D nanowires of various cross-sections and curvatures.

###

Media Contact
Alexander Zverev
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-78761-w

Tags: Electrical Engineering/ElectronicsElectromagneticsIndustrial Engineering/ChemistryMaterialsNanotechnology/MicromachinesTechnology TransferTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Nanodevice Harnesses Sound Waves to Shape Light, Revolutionizing Displays and Imaging Technologies

August 1, 2025
Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

Here’s a rewritten version of the headline for a science magazine post: “Could Desert Dust Hold the Key to Freezing Clouds?”

July 31, 2025

Rice Theoretical Physicist Illuminates Rare High-Field Phase in Superconductivity Research

July 31, 2025

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Sustainability Accelerator Chooses 41 Promising Projects Poised for Rapid Scale-Up

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Integrating Genetics, Modeling, and Climate Data: A Breakthrough Method for Predicting Rice Flowering

Hollings Researchers Demonstrate How Natural Language Processing Enhances Medical Practice

Developing Neonatal Point-of-Care Ultrasound Programs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.