• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, December 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists create ‘artificial leaf’ that turns carbon into fuel

Bioengineer by Bioengineer
November 4, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Converts harmful carbon dioxide into useful alternative fuel

IMAGE

Credit: University of Waterloo

Scientists have created an “artificial leaf” to fight climate change by inexpensively converting harmful carbon dioxide (CO2) into a useful alternative fuel.

The new technology, outlined in a paper published today in the journal Nature Energy, was inspired by the way plants use energy from sunlight to turn carbon dioxide into food.

“We call it an artificial leaf because it mimics real leaves and the process of photosynthesis,” said Yimin Wu, an engineering professor at the University of Waterloo who led the research. “A leaf produces glucose and oxygen. We produce methanol and oxygen.”

Making methanol from carbon dioxide, the primary contributor to global warming, would both reduce greenhouse gas emissions and provide a substitute for the fossil fuels that create them.

The key to the process is a cheap, optimized red powder called cuprous oxide.

Engineered to have as many eight-sided particles as possible, the powder is created by a chemical reaction when four substances – glucose, copper acetate, sodium hydroxide and sodium dodecyl sulfate – are added to water that has been heated to a particular temperature.

The powder then serves as the catalyst, or trigger, for another chemical reaction when it is mixed with water into which carbon dioxide is blown and a beam of white light is directed with a solar simulator.

“This is the chemical reaction that we discovered,” said Wu, who has worked on the project since 2015. “Nobody has done this before.”

The reaction produces oxygen, as in photosynthesis, while also converting carbon dioxide in the water-powder solution into methanol. The methanol is collected as it evaporates when the solution is heated.

Next steps in the research include increasing the methanol yield and commercializing the patented process to convert carbon dioxide collected from major greenhouse gas sources such as power plants, vehicles and oil drilling.

“I’m extremely excited about the potential of this discovery to change the game,” said Wu, a professor of mechanical and mechatronics engineering, and a member of the Waterloo Institute for Nanotechnology. “Climate change is an urgent problem and we can help reduce CO2 emissions while also creating an alternative fuel.”

###

Wu collaborated on the paper, Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol, with Tijana Rajh and other researchers at the Argonne National Laboratory in Illinois, as well as scientists at California State University, Northridge, and the City University of Hong Kong.

Media Contact
Chris Wilson-Smith
[email protected]
226-338-6564

Tags: AgricultureBiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyClimate ChangeEnergy SourcesMechanical EngineeringPlant SciencesTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Surgical Outcomes of Prenatal Neuroblastoma Diagnosis Explored

Assessing Nursing Students’ Skills in Pediatric Pain Management

Scutellaria Barbata Alkaloids Induce Apoptosis in Ovarian Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.