• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scaffold helps cells repair torn meniscus in lab tests

Bioengineer by Bioengineer
June 19, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scaffold-aided repair led to stronger meniscus, laying groundwork for potential human tests

IMAGE

Credit: Duke Health

DURHAM, N.C. – About a million times a year, Americans with a torn meniscus in their knee undergo surgery in hopes of a repair. Certain tears can’t be fixed or won’t heal well, and many patients later suffer osteoarthritis from the injury.

Scientists have tried developing scaffolds or structures from various materials, including plastic and textile fibers, to lay a foundation for new cells. In a paper published June 18 in the journal Scientific Reports, Duke scientists describe a more organic model — a scaffold derived from a pig’s meniscus, which performed better in lab tests than healing without a scaffold.

“A partial meniscus removal is one of the most commonly performed orthopedic surgeries in the U.S.,” said Amy McNulty, Ph.D., an assistant professor in orthopedic surgery at Duke and senior author of the paper.

“The damaged tissue must be cut out because it’s causing pain or catching, but when the tissue comes out it also alters load-bearing in the knee and often leads to osteoarthritis, so it would be beneficial to try and heal the meniscus in place using a tool like a scaffold,” McNulty said.

In lab tests, repairs aided by the scaffold resulted in a stronger meniscus repair after four weeks compared to a meniscus that went through the natural healing process.

A scaffold could be especially valuable when the meniscus tears near the inside of the crescent-shaped tissue where blood doesn’t flow. Without a blood supply, a tear in this section won’t mend and the tissue is often removed, McNulty said.

The pig-derived scaffold is advantageous over other models including synthetics, because it is processed without chemicals or enzymes, which helps it retain more natural properties, McNulty said. Also, the structure is more porous than other models and even regular meniscus tissue, which allows new cells to move into it more easily to integrate with damaged tissue.

“Cells from the native tissue appear to be naturally attracted to the scaffold — they want to move into it,” McNulty said. “Hopefully, this will lead one day to a scaffold being placed into different tears to augment healing and seamlessly integrate the pieces of damaged tissue.”

The next step is testing the scaffold in animal models and eventually in humans, she said.

###

In addition to McNulty, study authors include Jacob C. Ruprecht, Taylor D. Waanders, Christopher R. Rowland, James F. Nishimuta, Katherine A. Glass, Jennifer Stencel, Louis E. DeFrate, Farshid Guilak and J. Brice Weinberg.

The research was supported by the National Institutes of Health (grants AG028716, AR048852, AG015768, AR073752, AG046927, AR073221, AR074800, and AR065527), the Arthritis Foundation, a U.S. Department of Veterans Affairs Rehabilitation Research Service Merit Review Award, the Lord Foundation in support of the Shared Materials Instrumentation Facility Undergraduate User Program and an Orthopaedic Research and Education Foundation grant with funding provided by the Musculoskeletal Transplant Foundation.

Media Contact
Samiha Khanna
[email protected]

Original Source

https://corporate.dukehealth.org/news-listing/scaffold-helps-cells-repair-torn-meniscus-lab-tests?h=nl

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-44855-3

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthOrthopedic MedicinePhysiologySports MedicineSurgeryTransplantationTrauma/Injury
Share12Tweet8Share2ShareShareShare2

Related Posts

New Trichoderma frianum Species Identified in India

New Trichoderma frianum Species Identified in India

December 18, 2025
Comparing Pig, Mouse, and Human Genomes: Insights Revealed

Comparing Pig, Mouse, and Human Genomes: Insights Revealed

December 18, 2025

Vigna radiata CLC Genes: Key Players in Salt Resistance

December 18, 2025

Boosting Cassava Yield and Drought Resilience via Vascular Potassium

December 17, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synergistic Effects of Repurposed Drugs on Ovarian Cancer

Addressing Loneliness in Solitary Seniors Post-COVID

来曲肽对比度拉糖肽治疗中国2型糖尿病

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.