• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

SARS-CoV-2 under the helium ion microscope for the first time

Bioengineer by Bioengineer
February 4, 2021
in Health
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bielefeld researchers provide 3D images of coronaviruses

IMAGE

Credit: Photo left: Bielefeld University/M.-D. Müller, photo right: Thomas Popien

Scientists at Bielefeld University’s Faculty of Physics have succeeded for the first time in imaging the SARS-CoV-2 coronavirus with a helium ion microscope. In contrast to the more conventional electron microscopy, the samples do not need a thin metal coating in helium ion microscopy. This allows interactions between the coronaviruses and their host cell to be observed particularly clearly. The scientists have published their findings, obtained in collaboration with researchers from Bielefeld University’s Medical School OWL and Justus Liebig University Giessen, in the Beilstein Journal of Nanotechnology.

‘The study shows that the helium ion microscope is suitable for imaging coronaviruses – so precisely that the interaction between virus and host cell can be observed,’ says physicist Dr Natalie Frese. She is the lead author of the study and a researcher in the research group Physics of Supramolecular Systems and Surfaces at the Faculty of Physics.

Coronaviruses are tiny – only about 100 nanometres in diameter, or 100 billionths of a metre. So far, mainly scanning electron microscopy (SEM) has been used to examine cells infected with the virus. With SEM, an electron beam scans the cell and provides an image of the surface structure of the cell occupied by viruses. However, SEM has a disadvantage: the sample becomes electrostatically charged during the microscopy process. Because the charges are not dispersed from non-conductive samples, for example viruses or other biological organisms, the samples must be coated with an electrically conductive coating, such as a thin layer of gold.

‘However, this conductive coating also changes the surface structure of the sample. Helium ion microscopy does not require a coating and therefore allows direct scanning,’ says Professor Dr Armin Gölzhäuser, who heads the research group Physics of Supramolecular Systems and Surfaces. With the helium ion microscope, a beam of helium ions scans the surface of the sample. Helium ions are helium atoms that are each missing an electron – they are therefore positively charged. The ion beam also charges the sample electrostatically, but this can be compensated for by additionally irradiating the sample with electrons.

Furthermore, the helium ion microscope has a higher resolution and a greater depth of field.

In their study, the scientists infected cells – artificially produced from the kidney tissue of a species of monkey – with SARS-CoV-2 and studied them in dead state under the microscope. ‘Our images provide a direct view of the 3D surface of the coronavirus and the kidney cell – with a resolution in the range of a few nanometres,’ says Frese. This enabled the researchers to visualise interactions between the viruses and the kidney cell. Their study results indicate, for example, that helium ion microscopy can be used to observe whether individual coronaviruses are just lying on the cell or are bound to it. This is important in order to understand defence strategies against the virus: an infected cell can bind the viruses, which have already multiplied inside it, to its cell membrane on exit and thus prevent them from spreading further.

‘Helium ion microscopy is well suited for imaging the cell’s defence mechanisms that take place at the cell membrane,’ says virologist Professor Dr Friedemann Weber, too. He is investigating SARS-CoV-2 at Justus Liebig University in Gießen and collaborated with the Bielefeld researchers on this study. Professor Dr Holger Sudhoff, head physician at the University Clinic for Otolaryngology, Head and Neck Surgery, Medical School OWL at Bielefeld University, adds: ‘This method is a significant improvement for imaging the SARS-CoV-2 virus interacting with the infected cell. Helium ion microscopy can help to better understand the infection process in COVID-19 sufferers.’

Helium ion microscopy is a comparatively new technology. In 2010, Bielefeld University became the first German university to acquire a helium ion microscope, which is used primarily in nanotechnology. Worldwide, helium ion technology is still rarely used to examine biological samples. ‘Our study shows that there is great potential here,’ says Gölzhäuser. The study appears in a special issue of the Beilstein Journal of Nanotechnology on the helium ion microscope.

###

Original publication:

Natalie Frese, Patrick Schmerer, Martin Wortmann, Matthias Schürmann, Matthias König, Michael Westphal, Friedemann Weber, Holger Sudhoff, Armin Gölzhäuser: Imaging of SARS-CoV-2 infected Vero E6 cells by helium ion microscopy. Beilstein Journal of Nanotechnology, https://www.doi.org/10.3762/bjnano.12.13, published on 2 February 2021.

Media Contact
Professor Dr. Armin Gölzhäuser, Bielefeld University
[email protected]

Original Source

https://ekvv.uni-bielefeld.de/blog/uninews/entry/how_the_cell_binds_the

Related Journal Article

http://dx.doi.org/10.3762/bjnano.12.13

Tags: BiologyChemistry/Physics/Materials SciencesMaterialsMedicine/HealthNanotechnology/MicromachinesVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Short Web-Based Dance Boosts Health in Older Adults

November 4, 2025

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

November 4, 2025

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

November 4, 2025

Researchers Uncover Novel Method to Direct Stem Cell Fate

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Dynamic Interface Engineering: Enhancing Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries

Reviving Resilience: The Role of Algae in Coral Recovery Post-Bleaching

Short Web-Based Dance Boosts Health in Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.