• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, December 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Salton Sea aerosol exposure triggers unique and mysterious pulmonary response

Bioengineer by Bioengineer
June 22, 2021
in Health
Reading Time: 4 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Riverside mouse study suggests inflammation could play key role in progression to asthma

IMAGE

Credit: Stan Lim, UC Riverside.

RIVERSIDE, Calif. — Communities surrounding the Salton Sea, the inland body of water straddling California’s Riverside and Imperial counties, show high rates of asthma due, possibly, to high aerosol dust levels resulting from the sea shrinking over time.

Scientists suspect, however, the Salton Sea plays an additional role in pulmonary health.

A University of California, Riverside study performed on mice has found Salton Sea aerosol turns on nonallergic inflammation genes and may also promote lung inflammation. For comparison, aerosolized fungal allergen (Alternaria) — a common household fungal allergen — produces an allergic inflammation in the lungs of mice.

“Our work strongly suggests that soluble components in Salton Sea water promote a unique inflammation-associated response,” said Dr. David Lo, a distinguished professor of biomedical sciences at the UC Riverside School of Medicine, who led the study published in the journal Science of The Total Environment. “What relationship this response may have to asthma is not yet understood.”

Lo’s team exposed the mice to aerosolized suspensions generated from three separate sources: aqueous solutions of Alternaria filtrate, Salton Sea water, and Pacific Ocean water. Each exposure study lasted seven days and was performed in an exposure chamber and a control chamber, the latter receiving only pumped filtered air.

The researchers found exposure to aerosolized Alternaria triggered a dramatic allergic inflammation in the lungs of the mice. Aerosolized Salton Sea water increased B cell activity in the lung tissue of the mice; B cells are immune cells that make antibodies to fight bacteria and viruses. In contrast, mice exposed to Pacific Ocean aerosol showed no lung response.

“What’s interesting is that the aerosolized Salton Sea triggered an inflammatory response in the lungs that is clearly distinct from the characteristic allergic inflammatory responses produced by Alternaria exposures,” said Lo, who directs UCR’s Bridging Regional Ecology, Aerosolized Toxins, & Health Effects Center, or BREATHE. “What we may surmise from this is that while Salton Sea spray may not be sufficient to generate asthma alone, it could play an important role in the progression to asthma or other inflammatory diseases. More research is clearly needed.”

In recent years, the Salton Sea has increased in salinity and shrunk in size, generating toxic dust threatening the health of disadvantaged and vulnerable low-income communities living around the sea, many of whom are migrant workers. Primarily fed only by agricultural runoff and inflow of three rivers, the sea is rapidly retreating, which exposes the surrounding dry lakebed or “playa” and increases the levels of aerosol dust. Childhood asthma rates in the region around the Salton Sea are 20%-22.4%, higher than the state average of 14.5%.

Lo cautioned the current work did not test the biological effects of actual dust generated at the playa.

“In this paper, we report only our first steps in identifying the potential aerosols that may be contributing to lung disease in residents near the Salton Sea,” he said. “We know the Salton Sea water aerosols are neither the only contributor to inhaled aerosols nor the only source of potential aerosol toxins in the region.”

Lo’s group is already exploring whether the inflammatory response the researchers observed in mice serves as an aggravating factor, leading eventually to asthma; if the inflammatory response in the mice is identical to that seen in humans; and whether it’s a predisposing factor for people born and raised in the Salton Sea region. For those already predisposed to asthma, the researchers are planning to study whether the inflammation resulting from Salton Sea water aerosols worsens their health outcomes.

“We are only just getting started in answering these and other questions,” Lo said. “It’s so early in the process that we don’t even really know what disease we are looking at.”

The work was done in close collaboration with scientists at the Marlan and Rosemary Bourns College of Engineering’s Center for Environmental Research and Technology, or CE-CERT, and in partnership with members of the communities around the Salton Sea.

Lo was joined in the research by first author Trevor A. Biddle, Qi Li, Mia R, Maltz, Purvi N. Tandel, Rajrupa Chakraborty, Keziyah Yisrael, Ryan Drover, and David R. Cocker III.

###

The research was supported by the National Institute on Minority Health and Health Disparities of the National Institutes of Health, or NIH, through a grant to the Center for Health Disparities Research at UCR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

The research paper is titled “Salton Sea aerosol exposure in mice induces a pulmonary response distinct from allergic inflammation.”

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 25,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Iqbal Pittalwala
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2021.148450

Tags: Atmospheric ChemistryClimate ChangeEcology/EnvironmentMedicine/HealthPollution/RemediationPublic HealthPulmonary/Respiratory MedicineToxicology
Share38Tweet24Share7ShareShareShare5

Related Posts

Fif 1. A rainbow trout M-LA

Scientists navigate uncharted waters in fish immunology research

December 1, 2023
Ken T. Kishida, Ph.D.

Research shows human behavior guided by fast changes in dopamine levels

December 1, 2023

Mass General-developed brain care score (BCS) is a scientifically validated way to assess current health habits and risk to future brain health

December 1, 2023

‘Bone biographies’ reveal lives of medieval England’s common people – and illuminate early benefits system

December 1, 2023
Please login to join discussion

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    84 shares
    Share 34 Tweet 21
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pathogens use force to breach immune defenses, study finds

A color-based sensor to emulate skin’s sensitivity

Keeping Texas bridges ‘safe and usable for years to come’

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In