• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Revealed: The gut microbe source of a carcinogenic, DNA-smashing genotoxin

Bioengineer by Bioengineer
February 14, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new study provides the first direct evidence of how a genotoxic warhead that can target and destroy the DNA of nearby cells renders its carcinogenic effects. The results identify a potential biomarker for assessing colorectal cancer risk. Among the many microbes that inhabit our gut, some strains of Escherichia coli (E. coli) produce colibactin. Colibactin is thought to be a product of E. coli strains containing a biosynthetic gene cluster known as the pks island. Exposure to the genotoxin colibactin has been shown to cause severe genetic damage in mammalian cells by breaking strands of DNA apart, inducing increased rates of gene mutation and tumor growth. Furthermore, previous research has demonstrated that pks+ E. coli is found with greater frequency in patients with colorectal conditions, including colorectal cancer. However, despite its links to human cancer, the chemical nature of the genotoxin, its pro-carcinogenic role or how it gets into the cells it destroys has remained elusive for over a decade, according to the authors. Due to its instability and low concentration, isolating the genotoxin has remained a challenge. Most attempts have been limited to identifying the stable precursors of colibactin and using synthetic “colibactin mimics” in vitro. Here, Matthew Wilson and colleagues combine chemical synthesis with a newly developed untargeted mass-spectrometry-based approach – LC-MS3 DNA adductomics – and identified two chemical products left over after colibactin-mediated DNA damage in living human cells. According to Wilson et al., the newly discovered colibactin adducts provided the first direct evidence that alkylation via a cyclopropane “warhead” underlies the genotoxin’s DNA destruction. Furthermore, the data suggest that the adducts are biomarkers for pks+ E. coli exposure and could inform colorectal cancer prognosis. In a related Perspective, Rachel M. Bleich and Janelle C. Arthur write; “this [study] represents a significant mechanistic advance in understanding the chemical nature of colibactin and its carcinogenic activities.”

###

Media Contact
Press Package Team
[email protected]
202-326-6440
http://dx.doi.org/10.1126/science.aar7785

Tags: cancerCarcinogensGastroenterologyMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

Revolutionary Fusion Technique Predicts NSCLC Recurrence

September 18, 2025

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

September 18, 2025

New Study Investigates Cancer Risks in Children Exposed to Medical Imaging

September 18, 2025

Widely Available, Affordable Medication Reduces Colorectal Cancer Recurrence Risk by Half

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Korea University Study Establishes Age 70 as Threshold for Chemotherapy Benefit in Colorectal Cancer

Chung-Ang University Advances Chloride-Resistant Ru Nanocatalysts for Sustainable Seawater Hydrogen Production

ALDH2: Key Role in Autophagy and Cell Death

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.