• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers uncover new mechanism of gene regulation involved in tumor progression

Bioengineer by Bioengineer
January 8, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ready, set, go for crossing the barrier for transcription!

IMAGE

Credit: CRG, Iris Joval


Genes contain all the information needed for the functioning of cells, tissues, and organs in our body. Gene expression, meaning when and how are the genes being read and executed, is thoroughly regulated like an assembly line with several things happening one after another.

Researchers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain, in collaboration with scientists at the structural bioinformatics group, University Pompeu Fabra (UPF) and department of molecular epigenetics, Helmholtz Center Munich, Germany, have discovered a new step in this line, which controls the expression of some genes with an important role in cancer. “We observed that breast cancer cells need a particular modification to express a set of genes required for cellular proliferation and tumour progression,” explains Priyanka Sharma, CRG researcher and first author of the paper. “This modification allows the enzyme RNA polymerase II to overcome a pausing barrier and to continue to transcribe these genes,” adds Sharma, who is a Beatriu de Pinós postdoctoral researcher (cofunded by EU Marie Curie Fellowship) and also received funding from Novartis and the CRG internal call for women scientists (Women Scientists Support Grant – WOSS).

Cancer cells are willing to quickly proliferate so, genes involved in cell division and proliferation are really active and usually highly expressed. Such a precise and meticulous machinery involves many different molecules to properly function. In this case, when all the machinery to express proliferation genes is ready, it still has to wait for a particular modification to go. As in race when runners are asked to be ready, set and go. Here, the polymerase is also ready and set but still needs a final modification to cross the barrier for transcription and go.

“Deciphering every single step and all actors involved in this process is an important achievement in terms of fundamental science. We are now able to better understand how an intricate mechanism of gene regulation actually works and this might be a new target for clinical researchers to study novel therapies for certain types of cancer,” states Miguel Beato, CRG group leader and principal investigator in this work.

The work, which has been published in Molecular Cell, describes a novel modification of in the Carboxyl terminal domain of RNA Polymerase II, namely the de-imination of an arginine, by the enzyme PADI2, which allows the polymerase to transcribe genes relevant for cancer cell growth. “Most chemo-therapies are oriented at blocking the activity of enzymes, but we know that PADI2 participates in many different processes involving the nervous system, immune response and inflammation, among others. Thus, inhibiting PADI2 would have multiple side effects. Our results make it possible to target just the particular action of PADI2 on RNA polymerase needed for tumour progression without globally blocking the enzyme,” explains Beato.

###

Media Contact
Laia Cendrós
[email protected]
34-607-611-798

Original Source

https://www.crg.eu/en/news/ready-set-go-crossing-barrier

Related Journal Article

http://dx.doi.org/10.1016/j.molcel.2018.10.016

Tags: BiologyBreast CancercancerCell BiologyGenesGeneticsMedicine/HealthMolecular BiologyProstate Cancer
Share12Tweet8Share2ShareShareShare2

Related Posts

S100A13 Key to Osteosarcoma Prognosis

November 8, 2025

Steatotic Liver Disease and Cancer: Exploring Pathogenesis and Emerging Therapeutic Advances

November 8, 2025

Key Genes Linked to Lung Adenocarcinoma’s Vasculogenic Mimicry

November 8, 2025

Toripalimab Plus FLOT for Metastatic Gastric Cancer

November 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stress, Flexibility, and Perception in Student Mental Health

Oleanolic Acid: A Multi-Strategy Weapon Against Cancer

Embryonic Heat Manipulation: Metabolic Programming Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.