• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers trace 3,000 years of monsoons through shell fossils

Bioengineer by Bioengineer
April 25, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Katsura Yamada, Shinshu University, Japan

The tiny shells at the bottom of Lake Nakaumi in southwest Japan may contain the secrets of the East Asia Summer Monsoon. This rainy season is fairly predictable, ushering in air and precipitation conducive to growing crops, but – sometimes without any hint – the pattern fails. Some areas of East Asia are left without rainfall, and their crops die. Other areas are inundated with rain, and their crops and homes flood.

Ostracoda shells are smaller than the white wisp a fingernail grows over a month, yet they have recorded the effects of sunshine and climate shifts for almost 500 million years.

A team of researchers dug into the lake and the rich historical record in the shells to better understand why East Asian summer monsoons vary at the centennial scale, which should hold relatively steady. They published their results on March 22, 2019, in Scientific Reports.

“The mechanisms driving the variations in East Asian summer monsoons remain unclear, so we used the oxygen isotopes from adult ostracode shells to reconstruct the variations over the last 3,000 years in southwestern Japan,” said Katsura Yamada, paper author and a professor in the department of geology and faculty of science at Shinshu University.

Yamada and the team cored sections of the lake, retrieving shells from present day to 3,000 years ago. The scientists analyzed the shells, measuring a specific ratio between slightly different versions of oxygen, called isotopes. The isotope ratio can offer a glimpse into the atmosphere’s precise composition thousands of years ago. A higher rate of nitrogen in the atmosphere will produce a different isotope of oxygen than times when nitrogen is less abundant.

The researchers found that the primary factor of the centennial-scale variations in the East Asia summer monsoon was solar activity, also called insolation.

“Our results and compiled data propose that insolation variation was a primary factor of the centennial-scale East Asia summer monsoon variations,” Yamada said. “However, dominant factors affecting the variations can shift according to the solar insolation decreases.”

During sunny periods, the insolation dominates the East Asian monsoon pattern. During cooling off periods, usually around glacial ice ages, other factors – such as wind patterns – took over as the dominant influencer.

“Our next goal is to clarify the relationship between East Asian monsoon variations and other climatic phenomena,” Yamada said.

This work was supported by the Japan Society for the Promotion of Science and the cooperative research program for the Center for Advanced Marine Core Research at Kochi University.

Other authors Kazuma Kohara of the department of geology and Faculty of Science at Shinshu University; Minoru Ikehara of the Center for Advanced Marine Core Research at Kochi University; and Koji Seto of the Estuary Research Center at Shimane University.

###

About Shinshu University

Shinshu University is a national university in Japan founded in 1949 and working on providing solutions for building a sustainable society through interdisciplinary research fields: material science (carbon, fiber, composites), biomedical science (for intractable diseases, preventive medicine), and mountain science. We aim to boost research and innovation capability through collaborative projects with distinguished researchers from the world. For more information, please see: http://www.shinshu-u.ac.jp/english/

Media Contact
Nobuko Imanishi
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-41359-y

Tags: Climate ChangeClimate ScienceEarth SciencePaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025
Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

September 23, 2025

Unveiling Magnolia’s Role in Combating Metabolic Syndrome

September 23, 2025

Forecasting Cell Population Evolution Using a New Scaling Law

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beyond Access: Tackling Vaccine Hesitancy in Wealthy Nations

When External Limits Restrict Complex Fetal Care

JMIR Publications and Iowa State University Join Forces to Offer Unlimited Open Access Publishing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.