• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers discover effective pathway to convert CO2 into ethylene

Bioengineer by Bioengineer
September 16, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Yu Huang and William A. Goddard III

A research team from Caltech and the UCLA Samueli School of Engineering has demonstrated a promising way to efficiently convert carbon dioxide into ethylene — an important chemical used to produce plastics, solvents, cosmetics and other important products globally.

The scientists developed nanoscale copper wires with specially shaped surfaces to catalyze a chemical reaction that reduces greenhouse gas emissions while generating ethylene — a valuable chemical simultaneously. Computational studies of the reaction show the shaped catalyst favors the production of ethylene over hydrogen or methane. A study detailing the advance was published in Nature Catalysis.

“We are at the brink of fossil fuel exhaustion, coupled with global climate change challenges,” said Yu Huang, the study’s co-corresponding author, and professor of materials science and engineering at UCLA. “Developing materials that can efficiently turn greenhouse gases into value-added fuels and chemical feedstocks is a critical step to mitigate global warming while turning away from extracting increasingly limited fossil fuels. This integrated experiment and theoretical analysis presents a sustainable path towards carbon dioxide upcycling and utilization.”

Currently, ethylene has a global annual production of 158 million tons. Much of that is turned into polyethylene, which is used in plastic packaging. Ethylene is processed from hydrocarbons, such as natural gas.

“The idea of using copper to catalyze this reaction has been around for a long time, but the key is to accelerate the rate so it is fast enough for industrial production,” said William A. Goddard III, the study’s co-corresponding author and Caltech’s Charles and Mary Ferkel Professor of Chemistry, Materials Science, and Applied Physics. “This study shows a solid path towards that mark, with the potential to transform ethylene production into a greener industry using CO2 that would otherwise end up in the atmosphere.”

Using copper to kick start the carbon dioxide (CO2) reduction into ethylene reaction (C2H4) has suffered two strikes against it. First, the initial chemical reaction also produced hydrogen and methane — both undesirable in industrial production. Second, previous attempts that resulted in ethylene production did not last long, with conversion efficiency tailing off as the system continued to run.

To overcome these two hurdles, the researchers focused on the design of the copper nanowires with highly active “steps” — similar to a set of stairs arranged at atomic scale. One intriguing finding of this collaborative study is that this step pattern across the nanowires’ surfaces remained stable under the reaction conditions, contrary to general belief that these high energy features would smooth out. This is the key to both the system’s durability and selectivity in producing ethylene, instead of other end products.

The team demonstrated a carbon dioxide-to-ethylene conversion rate of greater than 70%, much more efficient than previous designs, which yielded at least 10% less under the same conditions. The new system ran for 200 hours, with little change in conversion efficiency, a major advance for copper-based catalysts. In addition, the comprehensive understanding of the structure-function relation illustrated a new perspective to design highly active and durable CO2 reduction catalyst in action.

Huang and Goddard have been frequent collaborators for many years, with Goddard’s research group focusing on the theoretical reasons that underpin chemical reactions, while Huang’s group has created new materials and conducted experiments. The lead author on the paper is Chungseok Choi, a graduate student in materials science and engineering at UCLA Samueli and a member of Huang’s laboratory.

###

Other authors in this study are from UC Irvine; Soochow University, China; The Hong Kong University of Science and Technology; and the Korea Advanced Institute of Science and Technology.

The research was supported by the Office of Naval Research, the U.S. Department of Energy, and the National Science Foundation, with additional support from the National Research Foundation of Korea, the Irvine Materials Research Institute and ExxonMobil.

Media Contact
Christine Wei-li Lee
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41929-020-00504-x

Tags: Chemistry/Physics/Materials SciencesClimate ChangeIndustrial Engineering/ChemistryMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ultra-Compact Plasmonic Nanocavity Boosts Magnetic SHG

September 5, 2025
Impact of Vegetable Waste on Labeo Rohita Growth

Impact of Vegetable Waste on Labeo Rohita Growth

September 5, 2025

Addressing Emerging Pollutants in China: An In-Depth Review of Current Challenges, Knowledge Gaps, and Strategic Solutions

September 5, 2025

Microwave-Assisted Synthesis of Biomass-Derived N-Doped Carbon Dots Advances Metal Ion Sensing Technology

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultra-Compact Plasmonic Nanocavity Boosts Magnetic SHG

Impact of Vegetable Waste on Labeo Rohita Growth

Addressing Emerging Pollutants in China: An In-Depth Review of Current Challenges, Knowledge Gaps, and Strategic Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.