• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Researchers Develop Smart Gels That Can Deliver Medicine On Demand

Bioengineer by Bioengineer
January 16, 2014
in Bioengineering
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the University of Delaware have developed a “smart” hydrogel that can deliver medicine on demand, in response to mechanical force.

Researchers Develop Smart Gels That Can Deliver Medicine On Demand

Over the past few decades, smart hydrogels have been created that respond to pH, temperature, DNA, light and other stimuli.

“The idea of a smart hydrogel that can release medicine over time is not new,” said Dr. Xinqiao Jia, UD professor of materials science and engineering and biomedical engineering. “What’s new is our ability to have medicine released in response to force — a major challenge for people with osteoarthritis and other ‘wear and tear’ injuries that compromise a person’s ability to perform everyday activities.”

Osteoarthritis is a chronic condition that affects nearly 27 million Americans, according to the Arthritis Foundation. It is characterized by soreness or stiffness in joints following inactivity or overuse, and pain that worsens after activity or as the day progresses.

The researchers believe the hyaluronic acid-based hydrogels developed at UD can be injected into an injury site — such as a knee or hip joint — and that as a patient walks or participates in therapeutic exercise, the walking motion will cause accelerated release of the drug, reducing inflammation and pain.

Testing under laboratory conditions has confirmed that as the UD-developed hydrogel is compressed, the encapsulated drugs are discharged into the surrounding environment. Preliminary cell testing confirmed the anti-inflammatory activity of the released drug molecules.

Now the team is collaborating with colleagues at Rush University in Chicago to test the hydrogels in animal models. Early results indicate that the gel is biocompatible, which Jia said is because hyaluronic acid is a naturally occurring substance in cartilage, making it more readily accepted in the body.

She also said the hydrogel could help with a variety of conditions beyond osteoarthritis, including ligament tears or other injury areas under high tension.

“I have even considered whether we can leverage this hydrogel platform to reduce inflammation in patients with vocal fold disorders,” Jia said.

UD collaborators on the project include Darrin Pochan, professor of materials science and engineering; Chandran Sabanayagam, an associate scientist at the Delaware Biotechnology Institute; and Longxi Xiao and Zhixiang Tong, Jia’s former students, and Yingchao Chen, a current student.

An expert in microscopy and characterization techniques, Sabanayagam’s role was to understand exactly how the gels behave under mechanical force and how the drug diffuses under pressure — important considerations in treatment efficacy.

The research team is now investigating whether future iterations of the hydrogel can be imbued with properties that would stimulate tissue regeneration and repair.

Story Source:

The above story is based on materials provided by University of Delaware.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Mental Health: How Psychedelic Research is Changing Treatment Worldwide

Social Anxiety Disrupts Neutral Word Processing

Autism Proteins Maintain Striatal Asymmetry in Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.