• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers develop sensor to detect brain disorders in seconds

Bioengineer by Bioengineer
March 19, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Central Florida

Using nanotechnology, UCF researchers have developed the first rapid detector for dopamine, a chemical that is believed to play a role in various diseases such as Parkinson’s, depression and some cancers.

Studies show too much dopamine could be associated with some cancers, while low dopamine could be associated with Parkinson’s disease and depression. The new technique developed at UCF requires only a few drops of blood, and results are available in minutes instead of hours because no separate lab is necessary to process the sample.

The new technology was described in a recent study in the journal Nano Letters.

More than half a million people in the United States have Parkinson’s and major episodes of depression affect about 16 million adults a year.

Current methods to detect dopamine are time consuming, require rigorous sample preparation, including blood-plasma separation, as well as specialized laboratory equipment. With this device, however, a few drops of blood on a palm-sized, rectangular chip is all that is needed.

“A neurotransmitter like dopamine is an important chemical to monitor for our overall well-being so we can help screen out neural disorders like Parkinson’s disease, various brain cancers, and monitor mental health,” said Debashis Chanda, an associate professor in UCF’s NanoScience Technology Center and the study’s principle investigator. “We need to monitor dopamine so that we can adjust our medical doses to help address those problems.”

Plasma is separated from the blood within the chip. Cerium oxide nanoparticles, which coat the sensor surface, selectively capture dopamine at microscopic levels from the plasma. The capture of dopamine molecules subsequently changes how light is reflected from the sensor and creates an optical readout indicating the level of dopamine.

Sudipta Seal, an engineering professor and chair of UCF’s Department of Materials Science and Engineering, said the use of cerium oxide nanoparticles was an important part of the sensor’s success.

“Getting the sensor to be sensitive to dopamine had been quite the challenge for researchers for a while, but using altered cerium oxide nanostructures on the sensing platform was key in making the sensor work,” Seal said.

Chanda co-developed the sensor with Abraham Vázquez-Guardado, a graduate of UCF’s College of Optics and Photonics and now a postdoctoral fellow at Northwestern University.

Vázquez-Guardado said reduced steps and processing make the test cost effective, and it can also be performed at the patient’s side rather than in a separate lab.

“There is no preprocessing needed,” he said. “Our plan was to make a much quicker, enzyme-free kind of detection.”

###

This study was made available online in December 2018 ahead of final publication in print on January 9, 2019.

Study co-authors also included Swetha Barkam, a UCF materials science and engineering graduate and Order of Pegasus recipient, now at Micron Technology; Madison Peppler, a graduate of UCF’s Department of Chemistry; Aritra Biswas, a doctoral student in the College of Optics and Photonics; Wessley Dennis, a UCF student supported by UCF’s Research and Mentoring Activities program; and Soumen Das, a postdoctoral fellow in the center who now works in the medical industry.

Chanda has a joint appointment in UCF’s Department of Physics and College of Optics and Photonics. He received his doctorate in photonics from the University of Toronto and worked as a postdoctoral fellow at the University of Illinois at Urbana-Champaign. He joined UCF in 2012.

Seal has a doctorate in materials engineering with a minor in biochemistry from the University of Wisconsin and was a postdoctoral fellow at the Lawrence Berkeley National Laboratory, University of California Berkeley. He is a Pegasus Professor and is affiliated with UCF’s Advanced Materials Processing Analysis Center and Nanoscience Technology Center. He is also a member of UCF’s Prosthetic Interfaces cluster and holds a secondary joint appointment in UCF’s College of Medicine. He joined UCF in 1997.

Part of the plasmonic sensor research was funded with support from the National Science Foundation and Northrop Grumman’s University Research Program.

Media Contact
Zenaida Gonzalez Kotala
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.8b04253

Tags: AlzheimercancerChemistry/Physics/Materials Sciences
Share35Tweet8Share2ShareShareShare2

Related Posts

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Newly Discovered Limonoid DHL-11 from Munronia henryi Targets IMPDH2 to Combat Triple-Negative Breast Cancer

February 7, 2026

New Discovery Reveals Why Ovarian Cancer Spreads Rapidly in the Abdomen

February 6, 2026

New Study Finds Americans Favor In-Clinic Screening Over At-Home Tests for Cervical Cancer

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.