• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Researchers develop human cell-based model to study small cell lung cancer

Bioengineer by Bioengineer
February 8, 2019
in Cancer
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Chen et al., 2019


Researchers from Weill Cornell Medicine have used human embryonic stem cells to create a new model system that allows them to study the initiation and progression of small cell lung cancer (SCLC). The study, which will be published February 8 in the Journal of Experimental Medicine, reveals the distinct roles played by two critical tumor suppressor genes that are commonly mutated in these highly lethal cancers.

SCLC, an extremely aggressive form of lung cancer, is found almost exclusively in smokers and usually becomes resistant within several months to existing treatments, such as chemo- and radiotherapy. Over the last 30 years, little progress has been made in developing new treatments for the disease, causing the US Congress and National Cancer Institute to designate it as a “recalcitrant” cancer.

One reason for the lack of new treatments is the rapid onset and progression of SCLC, making it difficult to obtain clinical samples for researchers to study. Over the past few years, models for studying SCLC have been developed in mice. The authors of the new report in JEM describe an alternative way to study SCLC in human cells by growing embryonic stem cells in culture and differentiating them into various types of lung cells capable of becoming cancerous. 

SCLC is thought to develop from a particular type of lung cell, called pulmonary neuroendocrine cells (PNECs), but until now, no one knew how to induce human embryonic stem cells to become PNECs in the lab. “We discovered a means to induce pulmonary neuroendocrine-like cells from cultured human embryonic stem cells after first differentiating them into lung progenitor cells,” says Huanhuan Joyce Chen, a postdoctoral fellow at the Meyer Cancer Center, Weill Cornell Medicine, who was one of the lead authors on the study. “We did this by blocking an important cell signaling pathway known as the NOTCH pathway.”

Almost all patients with SCLC carry mutations that inactivate two key tumor suppressor genes called RB and TP53. Chen and colleagues found that lung progenitors formed even more PNECs when their RB gene was inhibited in addition to the NOTCH signaling pathway. Moreover, RB-deficient PNECs expressed a set of genes very similar to those expressed by early-stage SCLC tumors, although they were unable to form tumors when injected into laboratory mice.

However, when Chen and colleagues also inhibited the TP53 gene, the PNECs began to express genes that promote cell proliferation and prevent cell death, and cultures containing these PNECs formed slowly growing tumors when injected under the skin of mice. The results suggest that mutations in the RB and TP53 affect two aspects of initiation of SCLC.

“Our system should enable further studies of the progression of these early-stage tumors into invasive SCLCs that resemble the more aggressive cancers found in patients,” says Harold Varmus, co-lead author of the study and Lewis Thomas University Professor at Weill Cornell Medicine. “If so, it should be possible to test cells at different stages of tumor development for susceptibility and resistance to therapeutic strategies.”

###

 

Chen et al., 2019. J. Exp. Med. http://jem.rupress.org/cgi/doi/10.1084/jem.20181155?PR

About the Journal of Experimental Medicine The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Media Contact
Ben Short
[email protected]

Original Source

http://jem.rupress.org/cgi/doi/10.1084/jem.20181155?PR

Related Journal Article

http://dx.doi.org/10.1084/jem.20181155

Tags: BiotechnologycancerCell BiologyMedicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Untreated Depression Worsens Surgical Outcomes in Cancer Patients, Study Finds

October 3, 2025

Pancreatic Tumor Microenvironment: Challenges and Opportunities

October 3, 2025

Research Highlights Six Key Communication Skills Valued by Cancer Patients in Surgeons

October 3, 2025

Rectal Bleeding in Young Adults Associated with an 8.5-Fold Increase in Colorectal Cancer Risk

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    87 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Untreated Depression Worsens Surgical Outcomes in Cancer Patients, Study Finds

LEMD3 Shapes 3D Chromatin to Preserve Vascular Identity

Keck Medicine of USC Enhances Access to Premier Healthcare Services in Pasadena

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 61 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.