• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Bioengineering

Researchers create artificial protein to control assembly of buckyballs

Bioengineer by Bioengineer
April 28, 2016
in Bioengineering
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

HANOVER, N.H. – A Dartmouth College scientist and his collaborators have created an artificial protein that organizes new materials at the nanoscale.

"This is a proof-of-principle study demonstrating that proteins can be used as effective vehicles for organizing nano-materials by design," says senior author Gevorg Grigoryan, an assistant professor of computer science at Dartmouth. "If we learn to do this more generally – the programmable self-assembly of precisely organized molecular building blocks — this will lead to a range of new materials towards a host of applications, from medicine to energy."

The study appears in the journal in Nature Communications. A PDF is available on request.

According to the U.S. National Nanotechnology Initiative, scientists and engineers are finding a wide variety of ways to deliberately make materials at the nanoscale – or the atomic and molecular level — to take advantage of their enhanced properties such as higher strength, lighter weight, increased control of light spectrum and greater chemical reactivity than their larger-scale counterparts.

Proteins are "smart" molecules, encoded by our genes, which organize and orchestrate essentially all molecular processes in our cells. The goal of the new study was to create an artificial protein that would self-organize into a new material — an atomically periodic lattice of buckminster fullerene molecules. Buckminster fullerene (buckyball for short) is a sphere-like molecule composed of 60 carbon atoms shaped like a soccer ball. Buckyballs have an array of unusual properties, which have excited scientists for several decades because of their potential applications. Buckyballs are currently used in nanotechology due to their high heat resistance and electrical superconductivity, but the molecule is difficult to organize in desired ways, which hampers its use in the development of novel materials.

In their new research, Grigoryan and his colleagues show that their artificial protein does interact with buckyball and indeed does organize it into a lattice. Further, they determined the 3-dimensional structure of this lattice, which represents the first ever atomistic view of a protein/buckyball complex.

"Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties," Grigoryan says. "In this research, we demonstrate that proteins can direct the self-assembly of buckminsterfullerene into ordered superstructures. Further, excitingly, we have observed this protein/buckyball lattice conducts electricity, something that the protein-alone lattice does not do. Thus, we are beginning to see emergent material behaviors that can arise from combing the fascinating properties of buckyball and the abilities of proteins to organize matter at the atomic scale. Taken together, our findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design."

###

The study included researchers from Dartmouth College, Sungkyunkwan University, the New Jersey Institute of Technology, the National Institute of Science Education and Research, the University of California-San Francisco, the University of Pennsylvania and the Institute for Basic Science.

Dartmouth Assistant Professor Gevorg Grigoryan is available to comment at [email protected].

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://communications.dartmouth.edu/media/broadcast-studios

Media Contact

John Cramer
[email protected]
603-646-9130
@dartmouth

http://www.dartmouth.edu

The post Researchers create artificial protein to control assembly of buckyballs appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Why is the first Turkish bioengineering promotion website, Biyomuhendislik.com, so important?

February 4, 2023

Robo-fish

September 19, 2016

Mice born from ‘tricked’ eggs

September 17, 2016

UCLA researchers use stem cells to grow 3-D lung-in-a-dish

September 16, 2016
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    146 shares
    Share 58 Tweet 37
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Designing Ca2+ Channels from Filter Geometry

Validating Holistic Nursing Competence in Iranian Nurses

CGREF1 Boosts Colorectal Cancer Migration, Indicates Poor Prognosis

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.