• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Immunology

Regular monitoring may be only way to prevent large COVID-19 outbreaks in schools

Bioengineer by Bioengineer
July 8, 2021
in Immunology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New simulations suggest that waiting until a student tests positive is too late for prevention

IMAGE

Credit: Paul Tupper (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/)

A new study examines factors that underlie COVID-19 outbreaks in schools and suggests that large outbreaks can only be prevented with regular monitoring of everyone in the school setting. Paul Tupper and Caroline Colijn of Simon Fraser University, Canada, present these findings in the open-access journal PLOS Computational Biology.

Data from around the world show highly varied outcomes for COVID-19 clusters in schools, with some settings having many large outbreaks and others having few serious problems. The factors underlying this variability have been unclear, as have the most effective strategies for preventing large outbreaks.

To better understand COVID-19 dynamics at schools, Tupper and Colijn used a mathematical model to simulate disease spread in the classroom. The simulations incorporated two factors that could affect outbreak severity: differences between infected individuals in how easily they can transmit the disease to others, and differences in transmission rates for different environments and activities.

The simulations showed that, in a classroom with 25 students, anywhere from 0 to 20 students might be infected after exposure, depending on even small adjustments to transmission rates for infected individuals or environments.

The researchers then simulated the effects of different protocols to prevent large clusters. They found that, in scenarios with high transmission rates, preventive actions (such as closing down a whole class) that only took effect after a student developed symptoms and tested positive were too slow to prevent large outbreaks. In fact, large clusters could only be prevented with regular monitoring of everyone in the setting, for example with pooled rapid testing on site.

“We found that waiting until a student develops symptoms and tests positive is too slow a response, even though this was the method used in many jurisdictions to prevent COVID-19 transmission,” Tupper says. “Screening students without symptoms works quite well in our model and could also be applied in workplaces or shared living accommodations.”

The scientists plan to incorporate additional data and expand their model to explore the best strategies to prevent spread after a case is detected, both in classrooms and other settings.

###

Peer-reviewed; Simulation / modelling; N/A

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009120

Citation: Tupper P, Colijn C (2021) COVID-19 in schools: Mitigating classroom clusters in the context of variable transmission. PLoS Comput Biol 17(7): e1009120. https://doi.org/10.1371/journal.pcbi.1009120

Funding: PT was supported by a Natural Science and Engineering Research Council (Canada) Discovery Grant, RGPIN-2019-06911 https://www.nserc-crsng.gc.ca/index_eng.asp They did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. CC was supported by a Genome BC grant, COV-142. https://www.genomebc.ca/ They did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Media Contact
Paul Tupper
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pcbi.1009120

Tags: Algorithms/ModelsBiologyDiagnosticsEpidemiologyHealth Care Systems/ServicesImmunology/Allergies/AsthmaInfectious/Emerging DiseasesMedicine/HealthPediatricsVirology
Share13Tweet8Share2ShareShareShare2

Related Posts

IMAGE

UMass Amherst grad student awarded fellowship for food allergy research

July 23, 2021
IMAGE

Less-sensitive COVID-19 tests may still achieve optimal results if enough people tested

July 22, 2021

Public trust in CDC, FDA, and Fauci holds steady, survey shows

July 20, 2021

USC study shows male-female differences in immune cell function

July 19, 2021
Please login to join discussion

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    67 shares
    Share 27 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Extinction of steam locomotives derails assumptions about biological evolution

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

DGIST Professor Yoonkyu Lee’s research team has developed a high-performance transparent-flexible electronic device based on a copper-graphene nanowire synthesized by scintillation

DGIST held a graduation ceremony for the first half of 2023 (Feb.)

Do we understand the flickering flames?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In